Radiation Transport in AMR

  • P. Velarde
  • F. Ogando
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 41)


Coarse Mesh Riemann Problem Adaptive Mesh Radiation Transport Discrete Ordinate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.L. Adams and E.W. Larsen. Fast iterative methods for discrete-ordinates particle transport calculations. Progress in nuclear energy, 1:3–159, 2002.CrossRefGoogle Scholar
  2. 2.
    R.E. Alcouffe, R.S. Baker, F.W. Brinkley, D.R. Marr R.D. O’Dell, and W.F. Walters. DANTSYS a diffusion accelerated neutral particle transport code system. Technical Report LA-12969-M, LANL, 1995.Google Scholar
  3. 3.
    R.E. Alcouffe, B.A. Clark, and E.W. Larsen. Multiple time scales, chapter The Difussion-Synthetic acceleration of transport iterations, with applications to a radiation hydrodynamics problem, pages 73–111. Academic Press, Orlando, Florida, 1985.Google Scholar
  4. 4.
    M.J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics. J. Comp. Phys., 82:64–84, 1989.CrossRefGoogle Scholar
  5. 5.
    M.J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential equations. J. Comp. Phys., 53:484–512, 1984.MathSciNetCrossRefGoogle Scholar
  6. 6.
    W.Y. Crutchfield and M.L. Welcome. Object-oriented implementations of adaptive mesh refinement algorithms. Scientific Programming, 2: 145–156, 1993.Google Scholar
  7. 7.
    L. Howell, R. Pember, P. Colella, J.P. Jessee, and W. Fiveland. A conservative adaptive-mesh algorithm for unsteady, combined-mode heat transfer using the discrete ordinates method. Numerical Heat Transfer Part B: Fundamentals, 35:407–430, 1999.CrossRefGoogle Scholar
  8. 8.
    P. Colella J.B. Bell and J. Trangenstein. Higher order godunov methods for general systems of hyperbolic conservation laws. J. Comput. Phys., 82:362–397, 1989.MathSciNetCrossRefGoogle Scholar
  9. 9.
    D. Martin. Solving poisson’s equation using adaptive mesh refinement (amr). Technical Report see, LBNL, 1999.Google Scholar
  10. 10.
    G.H. Miller and E.G. Puckett. A high order godunov method for multiple condensed phases. J. Comput. Phys., 128:134, 1996.CrossRefGoogle Scholar
  11. 11.
    E. Mínguez, R. Ruiz, P. Martel, J. M. Gil, J. G. Rubiano, and R. Rodríguez. Scaling law of radiative opacities for ICF elements. Nuc. Instr. and Meth. in Phys. Res. sect A, 464(1–3):218–224, 2001.CrossRefGoogle Scholar
  12. 12.
    E. Mínguez, J.F. Serrano, and M.L. Gámez. Analysis of atomic models for the extinction coefficient calculation. Las Part Beams, 6:265–275, 1998.Google Scholar
  13. 13.
    R.M. More, K.H. Warren, D.A. Young, and G.B. Zimmerman. A new quotidian equation of state (QEOS) for hot dense matter. Phys. Fluids, 31:3059, 1988.CrossRefGoogle Scholar
  14. 14.
    F. Ogando and P. Velarde. Development of a radiation transport fluid dynamic code under AMR scheme. JQSRT, 71:541–550, 2001.Google Scholar
  15. 15.
    C.A. Rendleman, V.E. Beckner, M. Lijewski, W.Y. Crutchfield, and J.B. Bell. Parallelization of structured, hierarchical adaptive mesh refinement algorithms. Comp Vis in Science, 3, 2000.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • P. Velarde
    • 1
  • F. Ogando
    • 2
    • 1
  1. 1.Instituto de Fusión NuclearMadridSpain
  2. 2.Universidad Nacional de Educación a DistanciaMadridSpain

Personalised recommendations