Skip to main content

AMR for low Mach number reacting flow

  • Conference paper
Adaptive Mesh Refinement - Theory and Applications

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 41))

Summary

We present a summary of recent progress on the development and application of adaptive mesh refinement algorithms for low Mach number reacting flows. Our approach uses a form of the low Mach number equations based on a general equation of state that discretely conserves both mass and energy. The discretization methodology is based on a robust projection formulation that accommodates large density contrasts. The algorithm supports modeling of multicomponent systems and incorporates an operator-split treatment of stiff reaction terms. The basic computational approach is embedded in an adaptive projection framework that uses structured hierarchical grids with subcycling in time that preserves the discrete conservation properties of the underlying single-grid algorithm. We present numerical examples illustrating the application of the methodology to turbulent premixed combustion and nuclear flames in type Ia supernovae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. Welcome. A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations. J. Comput. Phys., 142:1–46, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L. Welcome. A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations. 142:1–46, May 1998.

    MathSciNet  MATH  Google Scholar 

  3. R. Becker, M. Braack, and R. Rannacher. Numerical simulation of laminar flames at low mach number by adaptive finite elements. Combust. Theory Modelling, 3:503–534, 1999.

    Article  MATH  Google Scholar 

  4. J. B. Bell, M. S. Day, A. S. Almgren, M. J. Lijewski, and C. A. Rendleman. A parallel adaptive projection method for low Mach number flows. Int. J. Numer. Meth. Fluids, 40:209–216, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. B. Bell, M. S. Day, C. A. Rendleman, S. E. Woosley, and M. A. Zingale. Adaptive low mach number simulations of nuclear flames. Technical Report LBNL-52395, Lawrence Berkeley National Laboratory, March 2003. to appear in J. Comp. Phys.

    Google Scholar 

  6. J. B. Bell, M. S. Day, C. A. Rendleman, S. E. Woosley, and M. A. Zingale. Direct numerical simulations of type ia supernovae flames ii: The rayleigh-taylor instability. Technical Report LBNL-54300, Lawrence Berkeley National Laboratory, January 2004. submitted Astrophysical Journal.

    Google Scholar 

  7. J. B. Bell, M. S. Day, I. G. Shepherd, M. Johnson, R. K. Cheng, V. E. Beckner, M. J. Lijewski, and J. F. Grcar. Numerical simulation of a laboratory-scale turbulent v-flame. Technical Report LBNL-54198, Lawrence Berkeley National Labortory, 2003. submitted Proceedings of the Combustion Institute.

    Google Scholar 

  8. J. B. Bell and D. L. Marcus. A second-order projection method for variable density flows. 101(2):334–348, August 1992.

    MathSciNet  MATH  Google Scholar 

  9. B. A. V. Bennett, C. S. McEnally, L. D. Pfefferle, and M. D. Smooke. Computational and experimental study of axisymmetric coflow partially premixed methane/air flames. Combust. Flame, 123:522–546, 2000.

    Article  Google Scholar 

  10. B. A. V. Bennett and M. D. Smooke. Local rectangular refinment with application to axisymmetric laminar flames. Combust. Theory Modelling, 2:221–258, 1998.

    Article  MATH  Google Scholar 

  11. R. B. Bird, W. E. Stewart, and E. N. Lightfoot. Transport Phenomena. Wiley, New York, 2 edition, 2002.

    Google Scholar 

  12. P. N. Brown, G. D. Byrne, and A. C. Hindmarsh. VODE: A variable coefficient ode solver. SIAM J. Sci. Stat. Comput., 10:1038–1051, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  13. P.J. Coelho and J.C.F. Pereira. Calculation of a confined axisymmetric laminar diffusion flame using a local grid refinement technique. Combust. Sci. Tech., 92:243–264, 1993.

    Google Scholar 

  14. T. P. Coffee and J. M. Heimerl. Transport algorithms for premixed laminar steady-state flames. Comb. Flame, 43:273, 1981.

    Article  Google Scholar 

  15. M. S. Day and J. B. Bell. Numerical simulation of laminar reacting flows with complex chemistry. Combust. Theory Modelling, 4:535–556, 2000.

    Article  MATH  Google Scholar 

  16. H.C. de Lange and L.P.H. de Goey. Numerical modeling in a locally refined grid. Int. Jour. Num. Mech. Eng., 37:497–515, 1994.

    Article  MATH  Google Scholar 

  17. V. Giovangigli. Convergent iterative methods for multicomponent diffusion. IMPACT Comput. Sci. Engrg., 3:244–276, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  18. F. H. Harlow and J. E. Welch. Numerical calculation of time-dependent viscous incompressible flow of fluids with free surfaces. Physics of Fluids, 8:2182–2189, 1965.

    Article  Google Scholar 

  19. J. Hilditch and P. Colella. A front tracking method for compressible flames in one dimension. SIAM J. Sci. Comput., 16:755–772, 1995.

    Article  MathSciNet  Google Scholar 

  20. Rudolf Kippenhahn and Alfred Weigert. Stellar Structure and Evolution. Springer Verlag, 1992.

    Google Scholar 

  21. M. F. Lai. A Projection Method for Reacting Flow in the Zero Mach Number Limit. PhD thesis, University of California at Berkeley, 1993.

    Google Scholar 

  22. M. F. Lai, J. B. Bell, and P. Colella. A projection method for combustion in the zero Mach number limit. In Proceedings of the Eleventh AIAA Computational Fluid Dynamics Conference, pages 776–783, 1993.

    Google Scholar 

  23. A. Majda and J. A. Sethian. The derivation and numerical solution of the equations for zero Mach number combustion. Combust. Sci. Tech., 42:185–205, 1985.

    Google Scholar 

  24. R.M.M. Mallens, H.C. de Lange, C.H.J. van de Ven, and L. P. H. de Goey. Modeling of confined and unconfined laminar premixed flames on slit and tube burners. Combust. Sci. Tech., 107:387–401, 1995.

    Google Scholar 

  25. P.A. McMurtry, W.-H. Jou, J.J. Riley, and R.W. Metcalfe. Direct numerical simulations or a reacting mixing layer with chemical heat release. AIAA J., 24:962, 1986.

    Article  Google Scholar 

  26. H.N. Najm, R.W. Schefer, R.B. Milne, C.J. Mueller, K.D. Devine, and S.N. Kempka. Numerical and experimental investigation of vortical flow—flame interaction. Technical Report SAND98-8232, Sandia National Laboratory, February 1998.

    Google Scholar 

  27. R. B. Pember, A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. Lai. A higher-order projection method for the simulation of unsteady turbulent nonpremixed combustion in an industrial burner. Transport Phenomena in Combustion, pages 1200–1211, 1996. Taylor and Francis.

    Google Scholar 

  28. R. B. Pember, L. H. Howell, J. B. Bell, P. Colella, W. Y. Crutchfield, W. A. Fiveland, and J. P. Jessee. An adaptive projection method for unsteady, low-Mach number combustion. Comb. Sci. Tech., 140:123–168, 1998.

    Google Scholar 

  29. R. G. Rehm and H. R. Baum. The equations of motion for thermally driven buoyant flows. N. B. S. J. Res., 83:297–308, 1978.

    MATH  Google Scholar 

  30. Charles A. Rendleman, Vincent E. Beckner, Mike Lijewski, William Y. Crutchfield, and John B. Bell. Parallelization of structured, hierarchical adaptive mesh refinement algorithms. Computing and Visualization in Science, 3(3):147–157, 2000.

    Article  MATH  Google Scholar 

  31. L. T. Somers and L. P. H. de Goey. A numerical study of a premixed flame on a slit burner. Combust. Sci. Tech., 108:121–132, 1995.

    Google Scholar 

  32. Frank X. Timmes. The physical properties of laminar helium deflagrations. Astrophysical Journal, 528:913, 2000.

    Article  Google Scholar 

  33. Frank X. Timmes and F. Douglas Swesty. The accuracy, consistency, and speed of an electron-positron equation of state based on table interpolation of the helmholtz free energy. Astrophysical Journal Supplement, 126:501–516, 2000.

    Article  Google Scholar 

  34. M. D. Smooke A. A. Turnbull,, R. E. Mitchell, and D. E. Keyes. Solution of two-dimensional axisymmetric laminar diffusion flames by adaptive boundary value methods. In Mathematical Modeling in Combustion and Related Topics, pages 261–300, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bell, J. (2005). AMR for low Mach number reacting flow. In: Plewa, T., Linde, T., Gregory Weirs, V. (eds) Adaptive Mesh Refinement - Theory and Applications. Lecture Notes in Computational Science and Engineering, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27039-6_14

Download citation

Publish with us

Policies and ethics