Skip to main content

A Posteriori Error Estimation and Mesh Adaptivity for Finite Volume and Finite Element Methods

  • Conference paper
Book cover Adaptive Mesh Refinement - Theory and Applications

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 41))

Summary

Error representation formulas and a posteriori error estimates for numerical solutions of hyperbolic conservation laws are considered with specialized variants given for the Godunov finite volume and discontinuous Galerkin finite element methods. The error representation formulas utilize the solution of a dual problem to capture the nonlocal error behavior present in hyperbolic problems. The error representation formulas also provide a framework for understanding superconvergence properties of functionals and fundamental differences between finite element and Godunov finite volume methods. Computable error estimates are then constructed for practical implementation in computer codes. The error representation formulas and computable error estimates also suggest a straightforward strategy for mesh adaptivity which is demonstrated on numerical hyperbolic problems of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Abgrall. An essentially non-oscillatory reconstruction procedure on finite-element type meshes. Comp. Meth. Appl. Mech. Engrg., 116:95–101, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  2. T.J. Barth. Numerical methods for gasdynamic systems on unstructured meshes. In Kröner, Ohlberger, and Rohde, editors, An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, volume 5 of Lecture Notes in Computational Science and Engineering, pages 195–285. Springer-Verlag, Heidelberg, 1998.

    Google Scholar 

  3. T.J. Barth and H. Deconinck (eds). Error estimation and adaptive discretization methods in CFD. In Barth and Deconinck, editors, Error Estimation and Adaptive Discretization Methods in CFD, volume 25 of Lecture Notes in Computational Science and Engineering. Springer-Verlag, Heidelberg, 2002.

    Google Scholar 

  4. T. J. Barth and P.O. Frederickson. Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction. Technical Report 90-0013, AIAA, Reno, NV, 1990.

    Google Scholar 

  5. T. J. Barth and D. C. Jespersen. The design and application of upwind schemes on unstructured meshes. Technical Report 89-0366, AIAA, Reno, NV, 1989.

    Google Scholar 

  6. T.J. Barth and M.G. Larson. A-posteriori error estimation for higher order Godunov finite volume methods on unstructured meshes. In Herbin and Kröner, editors, Finite Volumes for Complex Applications III, pages 41–63. Hermes Science Pub., London, 2002.

    Google Scholar 

  7. R. Becker and R. Rannacher. Weighted a posteriori error control in FE methods. In Proc. ENUMATH-97, Heidelberg. World Scientific Pub., Singapore, 1998.

    Google Scholar 

  8. G. Chiocchia. Exact solutions to transonic and supersonic flows. Technical Report AR-211, AGARD, 1985.

    Google Scholar 

  9. B. Cockburn, S.Y. Lin, and C.W. Shu. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One dimensional systems. J. Comp. Phys., 84:90–113, 1989.

    Article  MathSciNet  Google Scholar 

  10. B. Cockburn and C.W. Shu. The Runge-Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems. Technical Report 201737, Institite for Computer Applications in Science and Engineering (ICASE), NASA Langley R.C., 1997.

    Google Scholar 

  11. L. Durlofsky, S. Osher, and B. Engquist. Triangle based TVD schemes for hyperbolic conservation laws. Technical Report 90-10, Institite for Computer Applications in Science and Engineering (ICASE), NASA Langley R.C., 1990.

    Google Scholar 

  12. K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Introduction to numerical methods for differential equations. Acta Numerica, pages 105–158, 1995.

    Google Scholar 

  13. M. Giles, M. Larson, M. Levenstam, and E. Süli. Adaptive error control for finite element approximations of the lift and drag coefficients in viscous flow. preprint NA-97/06, Comlab, Oxford University, 1997.

    Google Scholar 

  14. S. K. Godunov. A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics. Mat. Sb., 47:271–290, 1959.

    MATH  MathSciNet  Google Scholar 

  15. M. Giles and N.A. Pierce. Improved lift and drag estimates using adjoint Euler equations. Technical Report 99-3293, AIAA, Reno, NV, 1999.

    Google Scholar 

  16. A. Harten. High resolution schemes for hyperbolic conservation laws. J. Comp. Phys., 49:357–393, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Harten. ENO schemes with subcell resolution. J. Comp. Phys., 83:148–184, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  18. R. Hartmann and P. Houston. Adaptive discontinuous galerkin methods for the compressible euler equations. J. Comp. Phys., 182(2):508–532, 2002.

    Article  MathSciNet  Google Scholar 

  19. A. Harten, S. Osher, B. Engquist, and S. Chakravarthy. Uniformly high-order accurate essentially nonoscillatory schemes III. J. Comp. Phys., 71(2):231–303, 1987.

    Article  MathSciNet  Google Scholar 

  20. C. Johnson. Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge, 1987.

    Google Scholar 

  21. C. Johnson and J. Pitkäranta. An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comp., 46:1–26, 1986.

    Article  MathSciNet  Google Scholar 

  22. C. Johnson, R. Rannacher, and M. Boman. Numerics and hydrodynamics stability theory: towards error control in CFD. SIAM J. Numer. Anal., 32:1058–1079, 1995.

    Article  MathSciNet  Google Scholar 

  23. M.G. Larson and T.J. Barth. A posteriori error estimation for adaptive discontinuous Galerkin approximations of hyperbolic systems. In Cockburn, Karniadakis, and Shu, editors, Discontinuous Galerkin Methods, volume 11 of Lecture Notes in Computational Science and Engineering. Springer-Verlag, Heidelberg, 1999.

    Google Scholar 

  24. J. T. Oden and S. Prudhomme. Goal-oriented error estimation and adaptivity for the finite element method. Technical Report 99-015, TICAM, U. Texas, Austin,TX, 1999.

    Google Scholar 

  25. S. Prudhomme and J.T. Oden. On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors. Comp. Meth. Appl. Mech. and Eng., pages 313–331, 1999.

    Google Scholar 

  26. W. H. Reed and T. R. Hill. Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos National Laboratory, Los Alamos, New Mexico, 1973.

    Google Scholar 

  27. S\(\ddot 9\)8._E. Süli. A posteriori error analysis and adaptivity for finite element approximations of hyperbolic problems. In Kröner, Ohlberger, and Rohde, editors, An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, volume 5 of Lecture Notes in Computational Science and Engineering, pages 122–194. Springer-Verlag, Heidelberg, 1998.

    Google Scholar 

  28. P. Vankeirsblick. Algorithmic Developments for the Solution of Hyperbolic Conservation Laws on Adaptive Unstructured Grids. PhD thesis, Katholieke Universiteit Leuven, Belgium, 1993.

    Google Scholar 

  29. B. van Leer. Towards the ultimate conservative difference schemes V. A second order sequel to Godunov’s method. J. Comp. Phys., 32:101–136, 1979.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barth, T.J. (2005). A Posteriori Error Estimation and Mesh Adaptivity for Finite Volume and Finite Element Methods. In: Plewa, T., Linde, T., Gregory Weirs, V. (eds) Adaptive Mesh Refinement - Theory and Applications. Lecture Notes in Computational Science and Engineering, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27039-6_13

Download citation

Publish with us

Policies and ethics