Skip to main content

Single Molecule Spectroscopy: Basics and Applications

  • Chapter
Fluorescence Spectroscopy in Biology

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 3))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rotman B (1961) Measurement of activity of single molecules of β-D-galactosidase. Proc Natl Acad Sci USA 47:1981–1991

    CAS  Google Scholar 

  2. Rotman B (1973) Measurement of single molecules of antibody by their ability to activate a deflective enzyme. In: Thaer AA, Sernetz M (eds) Fluorescence techniques in cell biology. Springer, Berlin Heidelberg New York, pp 333–337

    Google Scholar 

  3. Hirschfeld T (1976) Optical microscopic observation of single small molecules. Appl Opt 15:2965–2966

    CAS  Google Scholar 

  4. Hirschfeld T (1976) Quantum efficiency independence of the time integrated emission from a fluorescent molecule. Appl Opt 15:3135–3138

    CAS  Google Scholar 

  5. Dovichi NJ, Martin JC, Jett JH, Keller RA (1983) Attogram detection limit for aqueous dye samples by laser-induced fluorescence. Science 219:845–847

    CAS  Google Scholar 

  6. Shera EB, Seitzinger NK, Davis LM, Keller RA, Soper SA (1990) Detection of single fluorescent molecules. Chem Phys Lett 174:553–557

    CAS  Google Scholar 

  7. Meixner AJ (1998) Optical single-molecule detection at room temperature. Adv Photochem 24:1–59

    CAS  Google Scholar 

  8. Xie XS, Trautman JK (1998) Optical studies of single molecules at room temperature. Annu Rev Phys Chem 49:441–480

    Article  CAS  Google Scholar 

  9. Enderlein J, Ambrose WP, Goodwin PM, Keller RA (1999) Fluorescence detection of single molecules applicable to small volume assays. In: Köhler M, Mejevaia T, Saluz HP (eds) Microsystem technology: A powerful tool for biomolecular studies. Birkhäuser, Basel, pp 311–329

    Google Scholar 

  10. Weiss S (1999) Fluorescence spectroscopy of single biomolecules. Science 283:1676–1683

    Article  CAS  Google Scholar 

  11. Ambrose WP, Goodwin PM, Jett JH, van Orden A, Werner JH, Keller RA (1999) Single molecule fluorescence spectroscopy at ambient temperature. Chem Rev 99:2929–2956

    Article  CAS  Google Scholar 

  12. Ishii Y, Yanagida T (2000) Single molecule detection in life science. Single Mol 1:5–14

    Article  CAS  Google Scholar 

  13. Keller RA, Emory SR, Ambrose WP, Goodwin PM, Arias AA, Jett JJ, Cai H (2002) Analytical applications of single-molecule detection. Anal Chem 74:316–324A

    Article  CAS  Google Scholar 

  14. Rigler R, Orrit M, Basché T (eds) (2001) Single molecule spectroscopy. Springer, Berlin Heidelberg New York

    Google Scholar 

  15. Zander C, Enderlein J, Keller RA (eds) (2002) Single molecule detection in solution. Wiley-VCH, Berlin

    Google Scholar 

  16. Orrit M, Bernard J, Brown R, Lounis B (1996) Optical spectroscopy of single molecule in solids. In: Wolf E (ed) Progress in optics, vol XXXV. Elsevier, Amsterdam, pp 63–144

    Google Scholar 

  17. Trautman JK, Macklin JJ, Brus LE, Betzig E (1994) Near-field spectroscopy of single molecules at room temperature. Nature 369:40–42

    Article  CAS  Google Scholar 

  18. Trautman JK, Macklin JJ (1996) Time-resolved spectroscopy of single molecules using near-field and far-field optics. Chem Phys 205:221–229

    Article  CAS  Google Scholar 

  19. Trautman JK, Ambrose WP (1997) Near-field optical imaging and spectroscopy of single molecules. In: Basché T, Moerner WE, Orrit M, Wild UP (eds) Single molecule optical detection, imaging and spectroscopy. VCH, Weinheim, pp 191–222

    Google Scholar 

  20. Ruiter AGT, Veerman JA, Garcia-Parajo MF, van Hulst NF (1997) Single-molecule rotational and translational diffusion observed by near-field scanning optical microscopy. J Phys Chem A 101:7318–7323

    Article  CAS  Google Scholar 

  21. Garcia-Parajo MF, Veerman JA, van Noort SJT, Grooth BG de, Greve J, van Hulst NF (1998) Near-field optical microscopy for DNA studies at the single molecular level. Bioimaging 6:43–53

    Article  CAS  Google Scholar 

  22. Garcia-Parajo MF, Veerman JA, Segers-Nolten GMJ, de Grooth BG, Greve J, van Hulst NF (1999) Visualising individual green fluorescent proteins with a near field optical microscope. Cytometry 36:239–246

    Article  CAS  Google Scholar 

  23. Gersen H, Garcia-Parajo MF, Novotny L, Veerman JA, Kuipers L, van Hulst NF (2000) Influencing the angular emission of a single molecule. Phys Rev Lett 85:5312–5315

    Article  CAS  Google Scholar 

  24. Gersen H, Garcia-Parajo MF, Novotny L, Veerman JA, Kuipers L, van Hulst NF (2001) Nearfield effects in single molecule emission. J Microsc 202:374–378

    Article  CAS  Google Scholar 

  25. van Hulst NF, Veerman JA, García-Parajó MF, Kuipers L (2000) Analysis of individual (macro)molecules and proteins using near-field optics. J Chem Phys 112:7790–7810

    Google Scholar 

  26. Göhbde W, Fischer UC, Fuchs H, Tittel J, Basché T, Bräuchle C, Herrmann A, Müllen K (1998) Fluorescence blinking and photobleaching of single terrylenediimide molecules studied with a confocal microscope. J Phys Chem A 102:9109–9116

    Google Scholar 

  27. Panzer O, Göhde W, Fischer UC, Fuchs H, Müllen K (1998) Influence of oxygen on single molecule blinking. Adv Mat 10:1469–1472

    Article  CAS  Google Scholar 

  28. Weston KD, Buratto SK (1998) Millisecond intensity fluctuations of single molecules at room temperature. J Phys Chem A 102:3635–3638

    Article  CAS  Google Scholar 

  29. Garcia-Parajo MF, Segers-Nolten GMJ, Veerman JA, Greve J, van Hulst NF (2000) Real-time light-driven dynamics of the fluorescence emission in single green fluorescent protein molecules. Proc Natl Acad Sci USA 97:7237–7242

    Article  CAS  Google Scholar 

  30. Dickson RM, Cubitt AB, Tsien RY, Moerner WE (1997) On/off blinking and switching behavior of single molecules of green fluorescent protein. Nature 388:355–358

    CAS  Google Scholar 

  31. Moerner WE (2002) Single-molecule optical spectroscopy of autofluorescent proteins. J Chem Phys 117:10925–10937

    Article  CAS  Google Scholar 

  32. Chen Y, Müller JD, Ruan QQ, Gratton E (2002) Molecular brightness characterization of EGFP in vivo by fluorescence fluctuation spectroscopy. Biophys J 82:133–144

    CAS  Google Scholar 

  33. Kubitscheck U, Kuckmann O, Kues T, Peters R (2000) Imaging and tracking of single GFP molecules in solution. Biophys J 78:2170–2179

    CAS  Google Scholar 

  34. Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2019

    Article  CAS  Google Scholar 

  35. Han M, Gao X, Su JZ, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19:631–635

    CAS  Google Scholar 

  36. Dahan M, Laurence T, Pinaud F, Chemla DS, Alivisatos AP, Sauer M, Weiss S (2001) Time-gated biological imaging by use of colloidal quantum dots. Opt Lett 26:825–827

    CAS  Google Scholar 

  37. Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302:442–445

    Article  CAS  Google Scholar 

  38. Jelezko F, Tietz C, Gruber A, Popa I, Nizovtsev A, Kilin S, Wrachtrup J (2001) Spectroscopy of single N-V centers in diamond. Single Mol 2:255–260

    CAS  Google Scholar 

  39. Lee TH, Gonzalez JI, Dickson RM (2002) Strongly enhanced field-dependent single-molecule electroluminescence. Proc Natl Acad Sci USA 99:10272–10275

    CAS  Google Scholar 

  40. Peyser LA, Vinson AE, Bartko AP, Dickson RM (2001) Photoactivated fluorescence from individual silver nanoclusters. Science 291:103–106

    Article  CAS  Google Scholar 

  41. Boyer D, Tamarat P, Maali A, Orrit M, Lounis B (2003) Imaging single metal nanoparticles in scattering media by photothermal interference contrast. Physica E 17:537–540

    Article  CAS  Google Scholar 

  42. Maali A, Cardinalb T, Treguer-Delapierre M (2003) Intrinsic fluorescence from individual silver nanoparticles. Physica E 17:559–560

    Article  CAS  Google Scholar 

  43. Cognet L, Tardin C, Boyer D, Choquet D, Tamarat P, Lounis B (2003) Single metallic nanoparticle imaging for protein detection in cells. Proc Natl Acad Sci USA 100:11350–11355

    Article  CAS  Google Scholar 

  44. Soper SA, Wabuyele M, Owens CV, Hammer RP (2002) Single molecule detection in the near-infrared. In: Zander C, Enderlein J, Keller RA (eds) Single-molecule detection in solution — methods and applications. Wiley-VCH, Berlin, pp 323–362

    Google Scholar 

  45. Arden-Jacob J, Frantzeskos J, Kemnitzer NU, Zilles A, Drexhage KH (2001) New fluorescent markers for the red region. Spectrochim Acta A 57:2271–2283

    CAS  Google Scholar 

  46. Lakowicz JR (2001) Radiative decay engineering: biophysical and biomedical applications. Anal Biochem 298:1–24

    Article  CAS  Google Scholar 

  47. Enderlein J (2002) Theoretical study of single molecule fluorescence in a metallic nanocavity. Appl Phys Lett 80:315–317

    Article  CAS  Google Scholar 

  48. Enderlein J (2002) Spectral properties of a fluorescing molecule within a spherical metallic nanocavity. Phys Chem Chem Phys 4:2780–2786

    Article  CAS  Google Scholar 

  49. Kachel V, Fellner-Feldegg H, Menke E (1990) Hydrodynamic properties of flow cytometry instruments. In: Melamed MR, Lindmo T, Mendelsohn ML (eds) Flow cytometry and sorting. Wiley-Liss, New York, pp 27–44

    Google Scholar 

  50. van Orden A, Machara NP, Goodwin PM, Keller RA (1998) Single molecule identification in flowing sample streams by fluorescence burst size and intraburst fluorescence decay rate. Anal Chem 70:1444–1451

    Google Scholar 

  51. Ambrose WP, Cai H, Goodwin PM, Jett JH, Habbersett RC, Larson EJ, Grace WK, Werner JH, Marrone BL, Keller RA (2000) Flow fragment sizing of DNA fragments. In: Lakowicz JR (ed) Topics in fluorescence, vol 7. Plenum, New York

    Google Scholar 

  52. Larson EJ, Hakovirta JR, Cai H, Jett JH, Burde S, Keller RA, Marrone BL (2000) Rapid DNA fingerprinting of pathogens by flow cytometry. Cytometry 41:203–208

    Article  CAS  Google Scholar 

  53. Cai H, White PS, Torney D, Deshpande A, Wang Z, Marrone B, Nolan JP (2000) Flow cytometry-based minisequencing: a new platform for high-throughput single-nucleotide polymorphism scoring. Genomics 66:135–143

    Article  CAS  Google Scholar 

  54. Lee YH, Maus RG, Smith BW, Winefordner JD (1994) Laser-induced fluorescence detection of a single molecule in a capillary. Anal Chem 66:4142–4149

    CAS  Google Scholar 

  55. Guenard RD, King LA, Smith BW, Winefordner JD (1997) 2-Channel sequential single-molecule measurement. Anal Chem 69:2426–2433

    Article  CAS  Google Scholar 

  56. Zander C, Drexhage KH, Han KT, Wolfrum J, Sauer M (1998) Single-molecule counting and identification in a microcapillary. Chem Phys Lett 286:457–465

    Article  CAS  Google Scholar 

  57. Neumann M, Ehrfeld W, Han KT, Jacob P, Konrad R, Siebert S, Wolfrum J, Sauer M (1999) Electrophoretic sizing of DNA fragments and detection of single mononucleotide molecules in microstructures. Biomed Chromatogr 13:109–110

    Article  CAS  Google Scholar 

  58. Sauer M, Angerer B, Han K-T, Zander C (1999) Detection and identification of single dyelabeled mononucleotide molecules released from an optical fiber in a microcapillary: first steps towards a new single molecule DNA sequencing technique. Phys Chem Chem Phys 1:2471–2477

    Article  CAS  Google Scholar 

  59. Becker W, Hickl H, Zander C, Drexhage KH, Sauer M, Siebert S, Wolfrum J (1999) Time-resolved detection and identification of single analyte molecules in microcapillaries by time-correlated single-photon counting (TCSPC). Rev Sci Instrum 70:1835–1841

    Article  CAS  Google Scholar 

  60. Fister JC, Jacobson SC, Davis LM, Ramsey JM (1998) Counting single chromophore molecules for ultrasensitive analysis and separations on microchip devices. Anal Chem 70:431–437

    Article  CAS  Google Scholar 

  61. Effenhauser CS, Bruin GJM, Paulus A, Ehrat M (1997) Integrated capillary electrophoresis on flexible silicone microdevices: analysis of DNA restriction fragments and detection of single DNA molecules on microchips. Anal Chem 69:3451–3457

    Article  CAS  Google Scholar 

  62. Chou HP, Spence C, Scherer A, Quake S (1999) A microfabricated device for sizing and sorting DNA molecules. Proc Natl Acad Sci USA 96:11–13

    CAS  Google Scholar 

  63. Foquet M, Korlach J, Zipfel W, Webb WW, Craighead HG (2002) DNA fragment sizing by single molecule detection in submicrometer-sized closed fluidic channels. Anal Chem 74:1415–1422

    Article  CAS  Google Scholar 

  64. Chen DY, Adelhelm K, Cheng XL, Dovichi NJ (1994) Simple laser-induced fluorescence detector for sulforhodamine 101 in a capillary electrophoresis system — detection limits of 10 yoctomoles or six molecules. Analyst 119:349–352

    Article  CAS  Google Scholar 

  65. Castro A, Shera EB (1995) Single-molecule electrophoresis. Anal Chem 67:3181–3186

    Article  CAS  Google Scholar 

  66. Castro A, Shera EB (1995) Single-molecule detection: applications to ultrasensitive biochemical analysis. Appl Opt 34:3218–3222

    CAS  Google Scholar 

  67. Castro A, Williams JGK (1997) Single-molecule detection of specific nucleic-acid sequences in unamplified genomic DNA. Anal Chem 69:3915–3920

    Article  CAS  Google Scholar 

  68. Haab BB, Mathies RA (1995) Single molecule fluorescence burst detection of DNA fragments separated by capillary electrophoresis. Anal Chem 67:3253–3260

    Article  CAS  Google Scholar 

  69. Haab BB, Mathies RA (1997) Optimization of single-molecule fluorescence burst detection of ds-DNA — application to capillary electrophoresis separations of 100-1,000 basepair fragments. Appl Spetrosc 51:1579–1584

    Google Scholar 

  70. Shortreed MR, Li H, Huang WH, Yeung ES (2000) High-throughput single-molecule DNA screening based on electrophoresis. Anal Chem 72:2879–2885

    Article  CAS  Google Scholar 

  71. Castro A (2002) Single molecule detection of specific nucleic acid sequences. In: Zander C, Enderlein J, Keller RA (eds) Single-molecule detection in solution — methods and applications. Wiley-VCH, Berlin, pp 303–321

    Google Scholar 

  72. Whitten WB, Arnold JM, Ramsey S, Bronk BV (1991) Single-molecule detection limits in levitated microdroplets. Anal Chem 63:1027–1031

    Article  CAS  Google Scholar 

  73. Barnes MD, Ng KC, Whitten WB, Ramsey JM (1993) Detection of single rhodamine 6G molecules in levitated microdroplets. Anal Chem 65:2360–2365

    CAS  Google Scholar 

  74. Barnes MD, Lermer N, Kung CY, Whitten WB, Ramsey JM, Hill SC (1997) Real-time observation of single-molecule fluorescence in microdroplet streams. Opt Lett 22: 1265–1267

    CAS  Google Scholar 

  75. Lermer N, Barnes MD, Kung CY, Whitten WB, Ramsey JM (1997) High-efficiency molecular counting in solution: single-molecule detection in electrodynamically focused microdroplet streams. Anal Chem 69:2115–2121

    Article  CAS  Google Scholar 

  76. Kung CY, Barnes MD, Lermer N, Whitten WB, Ramsey JM (1998) Confinement and manipulation of individual molecules in attoliter volumes. Anal Chem 70:658–661

    Article  CAS  Google Scholar 

  77. Barnes MD, Kung C-Y, Whitten WB, Ramsey JM, Arnold S, Holler S (1996) Fluorescence of oriented molecules in a microcavity. Phys Rev Lett 76:3931–3934

    Article  CAS  Google Scholar 

  78. Kung CY, Barnes MD, Lermer N, Whitten WB, Ramsey JM (1999) Single-molecule analysis of ultradilute solutions with guided streams of 1-µm water droplets. Appl Opt 38:1481–1487

    CAS  Google Scholar 

  79. Hansen RL, Harris JM (1998) Measuring reversible adsorption kinetics of small molecules at solid/liquid interfaces by total internal reflection fluorescence correlation spectroscopy. Anal Chem 70:4247–4256

    CAS  Google Scholar 

  80. Hansen RL, Harris JM (1998) Total internal reflection fluorescence correlation spectroscopy for counting molecules at liquid/solid interfaces. Anal Chem 70:2565–2575

    CAS  Google Scholar 

  81. Paige MF, Bierneld EJ, Moerner WE (2001) A comparison of through-the-objective total internal reflection microscopy and epifluorescence microscopy for single-molecule fluorescence imaging. Single Mol 2:191–201

    Article  CAS  Google Scholar 

  82. Ambrose WP, Goodwin PM, Nolan JP (1999) Single-molecule detection with total internal reflection excitation: comparing signal-to-background and total signals in different geometries. Cytometry 36:224–231

    Article  CAS  Google Scholar 

  83. Ruckstuhl T, Enderlein J, Jung S, Seeger S (2000) Forbidden light detection from single molecules. Anal Chem 72:2117–2123

    Article  CAS  Google Scholar 

  84. Ruckstuhl T, Rankl M, Seeger S (2003) Highly sensitive biosensing using a supercritical angle fluorescence (SAF) instrument. Biosens Bioelectron 18:1193–1199

    Article  CAS  Google Scholar 

  85. Krieg A, Laib S, Ruckstuhl T, Seeger S (2003) Real-time detection of nucleotide incorporation during complementary DNA strand synthesis. Chembiochem 4:589–592

    Article  CAS  Google Scholar 

  86. Ruckstuhl T, Seeger S (2003) Confocal total-internal-reflection fluorescence microscopy with a high-aperture parabolic mirror lens. Appl Opt 42:3277–3283

    Google Scholar 

  87. Böhmer M, Pampaloni F, Wahl M, Rahn HJ, Erdmann R, Enderlein J (2001) Advanced time-resolved confocal scanning device for ultrasensitive fluorescence detection. Rev Sci Instrum 72:4145–4152

    Google Scholar 

  88. Böhmer M, Enderlein J (2002) Single molecule detection on surfaces with the confocal laser scanning microscope. In: Zander C, Enderlein J, Keller RA (eds) Single-molecule detection in solution — methods and applications. Wiley-VCH, Berlin, pp 145–183

    Google Scholar 

  89. Funatsu T, Harada Y, Tokunaga M, Saito K, Yanagida T (1995) Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374:555–559

    Article  CAS  Google Scholar 

  90. Adachi K, Kinosita K, Ando T (1999) Single-fluorophore imaging with an unmodified epifluorescence microscope and conventional video camera. J Microsc 195:125–132

    Article  CAS  Google Scholar 

  91. Straub M, Hell SW (1998) Fluorescence lifetime three-dimensional microscopy with picosecond precision using a multifocal multiphoton microscope. Appl Phys Lett 73:1769–1771

    Article  CAS  Google Scholar 

  92. Tokunaga M, Kitamura K, Saito K, Iwane AH, Yanagida T (1997) Single-molecule imaging of fluorophores and enzymatic-reactions achieved by objective-type total internal-reflection fluorescence microscopy. Biochem Biophys Res Commun 235:47–53

    Article  CAS  Google Scholar 

  93. Vacha M, Kotani M (2003) Three-dimensional orientation of single molecules observed by far-and near-field fluorescence microscopy. J Chem Phys 118:5279–5282

    Article  CAS  Google Scholar 

  94. Mörtelmaier M, Kögler EJ, Hesse J, Sonnleitner M, Huber LA, Schütz GJ (2002) Single molecule microscopy in living cells: subtraction of autofluorescence based on two-color recording. Single Mol 3:225–231

    Google Scholar 

  95. Cognet L, Harms GS, Blab GA, Lommerse PHM, Schmidt T (2000) Simultaneous dualcolor and dual-polarization imaging of single molecules. Appl Phys Lett 77:4052–4054

    Article  CAS  Google Scholar 

  96. Ma Y, Shortreed MR, Yeung ES (2000) High-throughput single-molecule spectroscopy in free solution. Anal Chem 72:4640–4645

    CAS  Google Scholar 

  97. Schütz GJ, Trabesinger W, Schmidt T (1998) Direct observation of ligand colocalization on individual receptor molecules. Biophys J 74:2223–2226

    Google Scholar 

  98. Schütz GJ, Hesse J, Freudenthaler G, Pastushenkoo VP, Knaus HG, Pragl B, Schindler H (2000) 3D mapping of individual ion channels on living cells. Single Mol 1:153–157

    Google Scholar 

  99. Schütz GJ, Axmann M, Schindler H (2001) Imaging single molecules in three dimensions. Single Mol 2:69–74

    Google Scholar 

  100. Schütz GJ, Schindler H, Schmidt T (1997) Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys J 73:1073–1080

    Google Scholar 

  101. Schütz GJ, Kada G, Pastushenko VP, Schindler HG (2000) Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J 19:892–901

    Google Scholar 

  102. Schütz GJ, Schindler H (2002) Single dye tracing for ultrasensitive microscopy on living cells. In: Zander C, Enderlein J, Keller RA (eds) Single-molecule detection in solution — methods and applications. Wiley-VCH, Berlin, pp 231–245

    Google Scholar 

  103. Yanagida T, Nakase M, Nishiyama K, Oosawa F (1984) Direct observation of motion of single F-actin filaments in the presence of myosin. Nature 307:58–60

    Article  CAS  Google Scholar 

  104. Oiwa K, Eccleston JF, Anson M, Kikumoto M, Davis CT, Reid GP, Ferenczi MA, Corrie JET, Yamada A, Nakayama H, Trentham DR (2000) Comparative single-molecule and ensemble myosin enzymology: sulfoindocyanine ATP and ADP derivatives. Biophys J 78:3048–3071

    CAS  Google Scholar 

  105. Okada Y, Hirokawa N (1999) A processive single-headed motor: kinesin superfamily protein KIF1A. Science 283:1152–1157

    Article  CAS  Google Scholar 

  106. Inoue Y, Iwane AH, Miyai T, Muto E, Yanagida T (2001) Motility of single one-headed kinesin molecules along microtubules. Biophys J 81:2838–28350

    CAS  Google Scholar 

  107. Ishii Y, Iwane AH, Yokota H, Inoue Y, Wazawa T, Nishiyama M, Tanaka H, Kitamura K, Yanagida T (2002) Studying molecular motors on the single molecule level. In: Zander C, Enderlein J, Keller RA (eds) Single-molecule detection in solution — methods and applications. Wiley-VCH, Berlin, pp 273–292

    Google Scholar 

  108. Kubitschek U (2002) Single protein molecules visualized and tracked in the interior of eukaryotic cells. Single Mol 3:267–274

    Google Scholar 

  109. Dickson RM, Norris DJ, Moerner WE (1998) Simultaneous imaging of individual molecules aligned both parallel and perpendicular to the optic axis. Phys Rev Lett 81:5322–5325

    Article  CAS  Google Scholar 

  110. Bartko AP, Dickson RM (1999) Imaging three-dimensional singe molecule orientations. J Phys Chem B 103:11237–11241

    CAS  Google Scholar 

  111. Bartko AP, Xu K, Dickson RM (2002) Three-dimensional single molecule rotational diffusion in glassy state polymer films. Phys Rev Lett 89:026101

    Article  CAS  Google Scholar 

  112. Böhmer M, Enderlein J (2003) Orientation imaging of single molecules by wide-field epifluorescence microscopy. J Opt Soc B 20:554–559

    Google Scholar 

  113. O’Connor DV, Phillips D (1984) Time-correlated single photon counting. Academic, London

    Google Scholar 

  114. Soper SA, Davis LM, Shera EB (1992) Detection and identification of single molecules in solution. J Opt Soc Am B 9:1761–1769

    CAS  Google Scholar 

  115. Wilkerson CW, Goodwin PM, Ambrose WP, Martin JC, Keller RA (1993) Detection and lifetime measurement of single molecules in flowing sample streams by laser-induced fluorescence. Appl Phys Lett 62:2030–2032

    Article  Google Scholar 

  116. Li L-Q, Davis LM (1993) Single photon avalanche diode for single molecule detection. Rev Sci Instrum 64:1524–1529

    Article  CAS  Google Scholar 

  117. Böhmer M, Wahl M, Rahn HJ, Erdmann R, Enderlein J (2002) Time-resolved fluorescence correlation spectroscopy. Chem Phys Lett 353:439–445

    Google Scholar 

  118. Köllner M, Fischer P, Arden-Jacob J, Drexhage K-H, Müller R, Seeger S, Wolfrum J (1996) Fluorescence pattern recognition for ultrasensitive molecule identification: comparison of experimental data and theoretical predictions. Chem Phys Lett 250:355–360

    Google Scholar 

  119. Enderlein J, Goodwin PM, van Orden A, Ambrose WP, Erdmann R, Keller RA (1997) A maximum likelihood estimator to distinguish single molecules by their fluorescence decays. Chem Phys Lett 270:464–470

    Article  CAS  Google Scholar 

  120. Enderlein J, Sauer M (2001) Optimal algorithm for single molecule identification with time-correlated single photon counting. J Phys Chem A 105:48–53

    Article  CAS  Google Scholar 

  121. Herten DP, Tinnefeld P, Sauer M (2000) Identification of single fluorescently labeled mononucleotide molecules in solution by spectrally resolved time-correlated single photon counting. Appl Phys B 71:765–771

    Article  CAS  Google Scholar 

  122. Magde D, Elson E, Webb WW (1972) Thermodynamic fluctuations in a reacting system — measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29:705–708

    Article  CAS  Google Scholar 

  123. Elson EL, Magde D (1974) Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13:1–27

    CAS  Google Scholar 

  124. Magde D, Elson E, Webb WW (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13:29–61

    Article  CAS  Google Scholar 

  125. Widengren J, Mets Ü (2002) Conceptual basis of fluorescence correlation spectroscopy and related techniques as tools in bioscience. In: Zander C, Enderlein J, Keller RA (eds) Single-molecule detection in solution — methods and applications. Wiley-VCH, Berlin, pp 69–95

    Google Scholar 

  126. Petersen NO (1986) Scanning fluorescence correlation spectroscopy. I. Theory and simulation of aggregation measurements. Biophys J 49:809–815

    CAS  Google Scholar 

  127. Petersen NO, Johnson DC, Schlesinger MJ (1986) Scanning fluorescence correlation spectroscopy. II. Application to virus glycoprotein aggregation. Biophys J 49:817–820

    CAS  Google Scholar 

  128. Amediek A, Haustein E, Scherfeld D, Schwille P (2002) Scanning dual-color cross-correlation analysis for dynamic co-localization studies of immobile molecules. Single Mol 3:201–210

    Article  CAS  Google Scholar 

  129. Schwille P, Meyer-Almes FJ, Rigler R (1997) Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys J 72:1878–1886

    CAS  Google Scholar 

  130. Bacia K, Majoul IV, Schwille P (2002) Probing the endocytic pathway in live cells using dual-color fluorescence cross-correlation analysis. Biophys J 83:1184–1193

    CAS  Google Scholar 

  131. Kettling U, Koltermann A, Schwille P, Eigen M (1998) Real-time enzyme kinetics monitored by dual-color fluorescence cross-correlation spectroscopy. Proc Natl Acad Sci USA 95:1416–1420

    Article  CAS  Google Scholar 

  132. Koltermann A, Kettling U, Bieschke J, Winkler T, Eigen M (1998) Rapid assay processing by integration of dual-color fluorescence cross-correlation spectroscopy: high-throughput screening for enzyme activity. Proc Natl Acad Sci USA 95:1421–1426

    Article  CAS  Google Scholar 

  133. Heinze K, Koltermann A, Schwille P (2000) Simultaneous two-photon excitation of distinct labels for dual-color fluorescence cross-correlation analysis. Proc Natl Acad Sci USA 97:10377–10382

    Article  CAS  Google Scholar 

  134. Rarbach M, Kettling U, Koltermann A, Eigen M (2001) Dual-color fluorescence cross-correlation spectroscopy for monitoring the kinetics of enzyme-catalyzed reactions. Methods 24:104–116

    Article  CAS  Google Scholar 

  135. Heinze KG, Rarbach M, Jahnz M, Schwille P (2002) Two-photon fluorescence coincidence analysis: rapid measurements of enzyme kinetics. Biophys J 83:1671–1681

    CAS  Google Scholar 

  136. Balakrishnan J (2000) Spatial curvature effects on molecular transport by diffusion. Phys Rev E 61:4648–46451

    CAS  Google Scholar 

  137. Chirico G, Fumagalli C, Baldini G (2002) Trapped Brownian motion in single-and two-photon excitation fluorescence correlation experiments. J Phys Chem B 106:2508–2519

    Article  CAS  Google Scholar 

  138. Osborne MA, Balasubramanian S, Furey WS, Klenerman D (1998) Optically biased diffusion of single molecules studied by confocal fluorescence microscopy. J Phys B 102:3160–3167

    CAS  Google Scholar 

  139. Egner A, Schrader M, Hell SW (1998) Refractive index mismatch induced intensity and phase variations in fluorescence confocal, multiphoton and 4Pi-microscopy. Opt Commun 153:211–217

    Article  CAS  Google Scholar 

  140. Ganic D, Gan X, Gu M (2000) Reduced effects of spherical aberration on penetration depth under two-photon excitation. Appl Opt 39:3945–3947

    Article  CAS  Google Scholar 

  141. Fradin C, Abu-Arish A, Granek R, Elbaum M (2003) Fluorescence correlation spectroscopy close to a fluctuating membrane. Biophys J 84:2005–2020

    CAS  Google Scholar 

  142. Gennerich A, Schild D (2000) Fluorescence correlation spectroscopy in small cytosolic compartments depends critically on the diffusion model used. Biophys J 79:3294–3306

    CAS  Google Scholar 

  143. Korlach J, Schwille P, Webb WW, Feigenson GW (1999) Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc Natl Acad Sci USA 69:8461–8466

    Google Scholar 

  144. Gell C, Brockwell DJ, Beddard GS, Radford SE, Kalverda AP, Smith DA (2001) Accurate use of single molecule fluorescence correlation spectroscopy to determine molecular diffusion times. Single Mol 2:177–181

    Article  CAS  Google Scholar 

  145. Yoshida N, Tamura M, Kinjo M (2000) Fluorescence correlation spectroscopy: a new tool for probing the microenvironment of the internal space of organelles. Single Mol 1:279–283

    Article  CAS  Google Scholar 

  146. Widengren J, Rigler R (1998) Fluorescence correlation spectroscopy as a tool to investigate chemical reactions in solution and on cell surfaces. Cell Mol Biol 44:857–879

    CAS  Google Scholar 

  147. Björling S, Kinjo M, Földes-Papp Z, Hagman E, Thyberg P, Rigler R (1998) Fluorescence correlation spectroscopy of enzymatic DNA polymerization. Biochemistry 37:12971–12978

    Google Scholar 

  148. Häsler K, Pänke O, Junge W (1999) On the stator of rotary ATP synthase: the binding strength of subunit d to ab3 as determined by fluorescence correlation spectroscopy. Biochemistry 38:13759–13765

    Google Scholar 

  149. Schwille P, Bieschke J, Oehlenschlager F (1997) Kinetic investigations by fluorescence correlation spectroscopy: the analytical and diagnostic potential of diffusion studies. Biophys Chem 66:211–228

    Article  CAS  Google Scholar 

  150. Wohland T, Friedrich K, Hovius R, Vogel H (1999) Study of ligand-receptor interactions by fluorescence correlation spectroscopy with different fluorophores: evidence that the homopentameric 5-hydroxytryptamine Type 3 as receptor binds only one ligand. Biochemistry 38:8671–8681

    Article  CAS  Google Scholar 

  151. Widengren J, Mets Ü, Rigler R (1999) Photodynamic properties of green fluorescent proteins investigated by fluorescence correlation spectroscopy. Chem Phys 250:171–186

    Article  CAS  Google Scholar 

  152. Haupts U, Maiti S, Schwille P, Webb WW (1998) Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc Natl Acad Sci USA 95:13573–13578

    Article  CAS  Google Scholar 

  153. Heikal AA, Hess ST, Baird GS, Tsien RY, Webb WW (2000) Molecular spectroscopy and dynamics of intrinsically fluorescent proteins: Coral red (dsRed) and yellow (Citrine). Proc Natl Acad Sci USA 97:11996–12001

    Article  CAS  Google Scholar 

  154. Brock R, Vàmosi G, Vereb G, Jovin TM (1999) Rapid characterization of green fluorescent protein fusion proteins on the molecular and cellular level by fluorescence correlation microscopy. Proc Natl Acad Sci USA 96:10123–10128

    Article  CAS  Google Scholar 

  155. Heikal AA, Hess ST, Webb WW (2001) Multiphoton molecular spectroscopy and excited-state dynamics of enhanced green fluorescent protein (EGFP): acid-base specificity. Chem Phys 274:37–55

    Article  CAS  Google Scholar 

  156. Schwille P, Kummer S, Heikal AA, Moerner WE, Webb WW (2000) Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins. Proc Natl Acad Sci USA 97:151–156

    Article  CAS  Google Scholar 

  157. Widengren J, Seidel CAM (2000) Manipulation and characterization of photo-induced transient states of Merocyanine 540 by fluorescence correlation spectroscopy. Phys Chem Chem Phys 2:3435–3441

    Article  CAS  Google Scholar 

  158. Huang S, Heikal AA, Webb WW (2002) Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys J 82:2811–2825

    CAS  Google Scholar 

  159. Malvezzi-Campeggi F, Jahnz M, Heinze KG, Dittrich P, Schwille P (2001) Light-induced flickering of dsRed provides evidence for distinct and interconvertible fluorescent states. Biophys J 81:1776–1785

    CAS  Google Scholar 

  160. Widengren J, Schwille P (2000) Characterization of photoinduced isomerization and back-isomerization of the cyanine dye Cy5 by fluorescence correlation spectroscopy. J Phys Chem A 104:6416–6428

    Article  CAS  Google Scholar 

  161. Schwille P (2001) Fluorescence correlation spectroscopy and its potential for intracellular applications. Cell Biochem Biophys 34:383–408

    CAS  Google Scholar 

  162. Hess ST, Huang S, Heikal AA, Webb WW (2002) Biological and chemical applications of fluorescence correlation spectroscopy: a review. Biochemistry 41:697–705

    Article  CAS  Google Scholar 

  163. Rigler R, Elson E (eds) (2001) Fluorescence correlation spectroscopy. Springer, Berlin Heidelberg New York

    Google Scholar 

  164. Kask P, Palo K, Ullmann D, Gall K (1999) Fluorescence-intensity distribution analysis and its application in biomolecular detection technology. Proc Natl Acad Sci USA 96:13756–13761

    Article  CAS  Google Scholar 

  165. Kask P, Palo K, Fay N, Brand L, Mets U, Ullmann D, Jungmann J, Pschorr J, Gall K (2000) Two-dimensional fluorescence intensity distribution analysis: theory and applications. Biophys J 78:1703–1713

    Article  CAS  Google Scholar 

  166. Chen Y, Müller JD, So PTC, Gratton E (1999) The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys J 77:553–567

    CAS  Google Scholar 

  167. Chen Y, Müller JD, Berland KM, Gratton E (1999) Fluorescence fluctuation spectroscopy. In: Conn PM (ed) Methods: a companion to methods in enzymology, vol 19. Academic, London, pp 234–252

    Google Scholar 

  168. Chen Y, Müller JD, Tetin SY, Tyner JD, Gratton E (2000) Probing ligand protein binding equilibria with fluorescence fluctuation spectroscopy. Biophys J 79:1074–1084

    CAS  Google Scholar 

  169. Palo K, Mets U, Jager S, Kask P, Gall K (2000) Fluorescence intensity multiple distributions analysis: concurrent determination of diffusion times and molecular brightness. Biophys J 79:2858–2866

    Article  CAS  Google Scholar 

  170. Enderlein J, Robbins DL, Ambrose WP, Keller RA (1998) Molecular shot noise, burst size distributions, and single molecule detection in fluid flow: effects of multiple occupancy. J Phys Chem A 102:6089–6094

    Article  CAS  Google Scholar 

  171. Fries JR, Brand L, Eggeling C, Köllner M, Seidel CAM (1998) Quantitative identification of different single molecules by selective time-resolved confocal fluorescence spectroscopy. J Phys Chem A 102:6601–6613

    Article  CAS  Google Scholar 

  172. Maus M, Cotlet M, Hofkens J, Gensch T, De Schryver FC, Schaffer J, Seidel CAM (2001) An experimental comparison of the maximum likelihood estimation and nonlinear least-squares fluorescence lifetime analysis of single molecules. Anal Chem 73:2078–2086

    CAS  Google Scholar 

  173. Knemeyer J-P, Herten D-P, Sauer M (2003) Detection and identification of single molecules in living cells using spectrally resolved fluorescence lifetime imaging microscopy. Anal Chem 75:2147–53

    Article  CAS  Google Scholar 

  174. Dahan M, Deniz AA, Ha T, Chemla DS (1999) Ratiometric measurement and identification of single diffusing molecules. Chem Phys 247:85–106

    Article  CAS  Google Scholar 

  175. Eggeling C, Fries JR, Brand L, Günther R, Seidel CAM (1998) Monitoring conformational dynamics of a single molecule by selective fluorescence spectroscopy. Proc Natl Acad Sci USA 95:1556–1561

    Article  CAS  Google Scholar 

  176. Eggeling C, Schaffer J, Seidel CAM, Korte J, Brehm G, Schneider S, Schrof W (2001) Homogeneity, transport, and signal properties of single Ag particles studied by single-molecule surface-enhanced resonance Raman scattering. J Phys Chem A 105:3673–3679

    Article  CAS  Google Scholar 

  177. Schaffer J, Volkmer A, Eggeling C, Subramaniam V, Striker G, Seidel CAM (1999) Identification of single molecules in aqueous solution by time-resolved fluorescence anisotropy. Phys Chem A 103:331–336

    Article  CAS  Google Scholar 

  178. Kühnemuth R, Seidel CAM (2001) Principles of single molecule multiparameter fluorescence spectroscopy. Single Mol 2:251–254

    Google Scholar 

  179. Seidel C, personal communication

    Google Scholar 

  180. Börsch M, Turina P, Eggeling C, Fries JR, Seidel CAM, Labahn A, Gräber P (1998) Conformational changes of the H+-ATPase from Escherichia coli upon nucleotide binding detected by single molecule fluorescence. FEBS Lett 437:251–254

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Enderlein, J. (2005). Single Molecule Spectroscopy: Basics and Applications. In: Hof, M., Hutterer, R., Fidler, V. (eds) Fluorescence Spectroscopy in Biology. Springer Series on Fluorescence, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27004-3_7

Download citation

Publish with us

Policies and ethics