Skip to main content

Ischemic Heart Disease

  • Chapter
Clinical Cardiac MRI

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adzamli IK, Blau M, Pfeffer MA et al (1993) Phosphonate-modified Gd-DTPA complexes. III. The detection of myocardial infarction by MRI. Magn Reson Med 29:505–511

    Google Scholar 

  • Al-Saadi N, Nagel E, Gross M et al (2000) Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 101:824–834

    Google Scholar 

  • Baer FM, Smolarz R, Jungehulsing M (1992) Feasibility of high-dose dipyridamole MRI for the detection of coronary artery disease and comparison with coronary angiography. Am J Cardiol 69:51–56

    Article  PubMed  Google Scholar 

  • Baer FM, Smolarz K, Theissen P et al (1993) Identification of hemodynamically significant coronary artery stenoses by dipyridamole-magnetic resonance imaging and 99mTc-methoxyisobutyl-isonitrile-SPECT. Int J Card Imaging 9:133–145

    Article  PubMed  Google Scholar 

  • Baer FM, Voth E, Theissen P et al (1994) Gradient-echo magnetic resonance imaging during incremental dobutamine infusion for the localization of coronary artery stenoses. Eur Heart J 15:218–225

    PubMed  Google Scholar 

  • Bashour TT, Mason D (1990) Myocardial hibernation and “embalment”. Am Heart J 119:706–708

    PubMed  Google Scholar 

  • Becker LC, Jeremy RW, Schaper J et al (1999) Ultrastructural assessment of myocardial necrosis occuring during ischemia and 3-h reperfusion in the dog. Am J Physiol 46: H243–H252

    Google Scholar 

  • Beek AM, Kühl HP, Bondarenko O et al (2003) Delayed contrast-enhanced magnetic resonance imaging for the prediction of regional functional improvement after acute myocardial infarction. J Am Coll Cardiol 42:895–901

    Article  PubMed  Google Scholar 

  • Beller GA (2000) Noninvasive assessment of myocardial viability. N Engl J Med 343:1488–1490

    Article  PubMed  Google Scholar 

  • Beller GA (2001) Coronary heart disease in the first 30 years of the 21st Century: challenges and opportunities. Circulation 103:2428–2435

    PubMed  Google Scholar 

  • Bogaert J, Rademakers F (2001) Regional nonuniformity of the human left ventricle. A 3D MR myocardial tagging study. Am J Physiol 280:H610–H620

    Google Scholar 

  • Bogaert J, Bosmans H, Rademakers F et al (1995) Left ventricular quantification with breath-hold MR imaging: comparison with echocardiography. Magma 3:5–12

    PubMed  Google Scholar 

  • Bogaert J, Maes A, van de Werf F et al (1999) Functional recovery of subepicardial myocardial tissue in transmural myocardial infarction after successful reperfusion. An important contribution to the improvement of regional and global left ventricular function. Circulation 99:36–43

    PubMed  Google Scholar 

  • Bogaert J, Bosmans H, Maes A et al (2000) Remote myocardial dysfunction after acute anterior myocardial infarction: impact of left ventricular shape on regional function. A magnetic resonance myocardial tagging study. J Am Coll Cardiol 35:1525–1534

    Article  PubMed  Google Scholar 

  • Bogaert J, Dymarkowski S, Rademakers FE (2002) MRI and coronary heart disease: a review. JBR-BTR 85:57–81

    PubMed  Google Scholar 

  • Bogaert J, Taylor AM, Van Kerkhove F, Dymarkowski S (2004) Use of inversion recovery contrast-enhanced MRI for cardiac imaging: spectrum of applications. AJR Am J Roentgenol 182:609–615

    PubMed  Google Scholar 

  • Bolli R (1990) Mechanism of myocardial stunning. Circulation 82:723–738

    PubMed  Google Scholar 

  • Bourdillon PD, von der Lohe E, Lewis SJ et al (2003) Comparison of left ventriculography and coronary arteriography with positron emission tomography in assessment of myocardial viability. Clin Cardiol 26(2):60–66

    PubMed  Google Scholar 

  • Brady TJ, Goldman MR, Pykett IL et al (1982) Proton nuclear magnetic resonance imaging of regionally ischemic canine hearts: effect of paramagnetic proton signal enhancement. Radiology 144:343–347

    PubMed  Google Scholar 

  • Braunwald E, Kloner RA (1982) The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation 66:1146–1149

    PubMed  Google Scholar 

  • Bremerich J, Saeed M, Arheden H et al (2000) Normal and infarcted myocardium: differentiation with cellular uptake of manganese at MR imaging in a rat model. Radiology 216:524–530

    PubMed  Google Scholar 

  • Brown JJ, Higgins CB (1988) Myocardial paramagnetic contrast agents for MR imaging. Am J Roentgenol 151:865–872

    Google Scholar 

  • Buda AJ, Zotz RJ, Gallagher KP (1987) The effect of inotropic stimulation on normal and ischemic myocardium after coronary occlusion. Circulation 76:163–172

    PubMed  Google Scholar 

  • Camici P, Ferrannini E, Opie LH (1989) Myocardial metabolism in ischemic heart disease: basic principles and application to imaging by positron emission tomography. Prog Cardiovasc Dis 32:217–238

    Article  PubMed  Google Scholar 

  • Canby RC, Reeves RC, Evanochko WT et al (1987) Proton nuclear magnetic resonance relaxation times in severe myocardial ischemia. J Am Coll Cardiol 10:412–420

    PubMed  Google Scholar 

  • Caputo GR, Sechtem U, Tscholakoff D et al (1987) Measurement of myocardial infarct size at early and late time intervals using MR imaging: an experimental study in dogs. AJR Am J Roentgenol 149:237–243

    PubMed  Google Scholar 

  • Chaudhry FA, Tauke JT, Alessandrini RS et al (1999) Prognostic implications of myocardial contractile reserve in patients with coronary artery disease and left ventricular dysfunction. J Am Coll Cardiol 34:730–738

    Article  PubMed  Google Scholar 

  • Chen C, Cohen J, Myers C et al (1984) Paramagnetic metalloporphyrins as potential contrast agents in NMR imaging. FEBS Lett 168:70–74

    Article  PubMed  Google Scholar 

  • Chiu CW, So NM, Lam WWM et al (2003) Combined first-pass perfusion and viability study at MR imaging in patients with non-ST segment-elevation acute coronary syndromes: feasibility study. Radiology 226:717–722

    PubMed  Google Scholar 

  • Choi SI, Choi SH, Kim ST et al (2000) Irreversibly damaged myocardium at MR imaging with a necrotic tissue-specific contrast agent in a cat model. Radiology 215:863–868

    PubMed  Google Scholar 

  • Cigarroa CG, de Filippi C, Brickner ME et al (1993) Dobutamine stress echocardiography identifies hibernating myocardium and predicts recovery of left ventricular function after coronary revascularization. Circulation 88:430–436

    PubMed  Google Scholar 

  • Croisille P, Moore CC, Judd RM et al (1999) Differentiation of viable and nonviable myocardium by the use of three-dimensional tagged MRI in 2-day-old reperfused canine infarcts. Circulation 99:284–291

    PubMed  Google Scholar 

  • Cullen JH, Horsfield MA, Reek CR et al (1999) A myocardial perfusion reserve index in humans using first-pass contrast-enhanced magnetic resonance imaging. J Am Coll Cardiol 33:1386–1394

    Article  PubMed  Google Scholar 

  • De Roos A, Van Rossum AC, van der Wall E et al (1989) Reperfused and nonreperfused myocardial infarction: diagnostic potential of Gd-DTPA-enhanced MR imaging. Radiology 172:717–720

    PubMed  Google Scholar 

  • Dendale PAC, Franken RP, Waldmann GJ et al (1995) Lowdosage dobutamine magnetic resonance imaging as an alternative to echocardiography in the detection of viable myocardium after acute infarction. Am Heart J 130:134–140

    Article  PubMed  Google Scholar 

  • Dendale P, Franken PR, van der Wall EE, de Roos A (1997) Wall thickening at rest and contractile reserve early after myocardial infarction: correlation with myocardial perfusion and metabolism. Cor Art Dis 8:259–264

    Google Scholar 

  • Di Carli MF, Maddahi J, Rokhsar S et al (1998) Long-term survival of patients with coronary artery disease and left ventricular dysfunction:implications for the role of myocardial viability assessment in management decisions. J Thorac Cardiovasc Surg 116:997–1004

    PubMed  Google Scholar 

  • Downing SE, Chen V (1992) Acute hibernation and reperfusion of the ischemic heart. Circulation 82:699–707

    Google Scholar 

  • Dulce MC, Duerinckx AJ, Hartiala J et al (1993) MR imaging of the myocardium using nonionic contrast medium: signal-intensity changes in patients with subacute myocardial infarction. AJR Am J Roentgenol 160:963–970

    PubMed  Google Scholar 

  • Dymarkowski S, Ni Y, Miao Y et al (2002) Value of T2-weighted MRI early after myocardial infarction in dogs: comparison with bis-gadolinium-mesoporphyrin enhanced T1-weighted MRI and functional data from cine MRI. Invest Radiol 37:77–85

    Article  PubMed  Google Scholar 

  • Edelman RR, Wallner B, Singer A et al (1990) Segmented turboFLASH: method for breath-hold MR imaging of the liver with flexible contrast. Radiology 177:515–521

    PubMed  Google Scholar 

  • Eichenberger AC, Schuiki E, Kochli VD et al (1994) Ischemic heart disease: assessment with gadolinium-enhanced ultrafast MR imaging and dipyridamole stress. J Magn Reson Imaging 4:425–431

    PubMed  Google Scholar 

  • Eichstaedt HW, Felix R, Dougherty FC, Langer M, Rutsch W, Schmutzler H (1986) Magnetic resonance imaging (MRI) in different stages of myocardial infarction using the contrast agent gadolinium-DTPA. Clin Cardiol 9:527–535

    PubMed  Google Scholar 

  • Eichstaedt HW, Felix R, Danne O et al (1989) Imaging of acute myocardial infarction by magnetic resonance tomography (MRT) using the paramagnetic relaxation substance gadolinium-DTPA. Cardiovasc Drugs Ther 3:779–788

    Article  PubMed  Google Scholar 

  • Fedele F, Montesano T, Ferro-Luzzi M et al (1994) Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction: role of magnetic resonance imaging. Am Heart J 128:484–489

    Article  PubMed  Google Scholar 

  • Ferrari R, Ceconi C, Curello S et al (1996) Left ventricular dysfunction due to the new ischemic outcomes: stunning and hibernation. J Cardiovasc Pharmacol 28[Suppl 1]:18–26

    Article  Google Scholar 

  • Flacke S, Allen JS, Chia JM (2003) Characterization of viable and nonviable myocardium at MR imaging: comparison of gadolinium-based extracellular and blood pool contrast materials versus manganese-based contrast materials in a rat myocardial infarction model. Radiology 226:731–738

    PubMed  Google Scholar 

  • Frank JA, Feller MA, House WV et al (1976) Measurement of proton nuclear magnetic longitudinal relaxation times and water content in infarcted canine myocardium and induced pulmonary injury. Clin Res 24:217A–223A

    Google Scholar 

  • Fukuzawa S, Watanabe H, Shimada K et al (1994) Distribution patterns of Gd-DTPA-enhanced magnetic resonance imaging after intravenous tissue plasminogen activator therapy for acute myocardial infarction. Jpn Circ J 58:199–205

    PubMed  Google Scholar 

  • Furmanski P, Longley C (1998) Metalloporphyrin enhancement of magnetic resonance imaging of human tumor xenografts in nude mice. Cancer Res 48:4604–4610

    Google Scholar 

  • Fuster V (1999) Epidemic of cardiovascular disease and stroke: the three main challenges. Circulation 99:1132–1137

    PubMed  Google Scholar 

  • Fuster V, Frye RL, Kennedy MA et al (1979) The role of collateral circulation in the various coronary syndromes. Circulation 59:1137–1144

    PubMed  Google Scholar 

  • Garot J, Pascal O, Diéhold B et al (2002) Alterations of systolic left ventricular twist after acute myocardial infarction. Am J Physiol 282:H357–H362

    Google Scholar 

  • Gerber BL, Rochitte CE, Melin JA et al (2000) Microvascular obstruction and left ventricular remodeling early after acute myocardial infarction. Circulation 101:2734–2741

    PubMed  Google Scholar 

  • Gerber BL, Rochitte CE, Bluemke DA et al (2001) Relation between Gd-DTPA contrast enhancement and regional inotropic response in the periphery and center of myocardial infarction. Circulation 104:998–1004

    PubMed  Google Scholar 

  • Gerber TC, Fasseas P, Lennon RJ et al (2003) Clinical safety of magnetic resonance imaging early after coronary artery stent lacement. J Am Coll Cardiol 42:1295–1298

    Article  PubMed  Google Scholar 

  • Goldman MR, Brady TJ, Pykett IL et al (1982) Quantification of experimental myocardial infarction using nuclear magnetic resonance imaging and paramagnetic ion contrast enhancement in excised canine hearts. Circulation 66:1012–1016

    PubMed  Google Scholar 

  • Gould K (1978) Noninvasive assessment of coronary stenosis by myocardial perfusion imaging during pharmacologic coronary vasodilatation I. Physiologic basis and experimental validation. Am J Cardiol 41:267–278

    Article  PubMed  Google Scholar 

  • Gropler RJ, Bergmann SR (1991) Myocardial viability — what is the definition? J Nucl Med 32:10–12

    PubMed  Google Scholar 

  • Gropler RJ, Siegel BA, Sampathkumaran K et al (1992) Dependence of recovery of contractile function on maintenance of oxidative metabolism after myocardial infarction. J Am Coll Cardiol 19:989–997

    PubMed  Google Scholar 

  • Hartnell G, Cerel A, Kamalesh M, Finn JP, Hill T, Cohen M, Tello R, Lewis S (1994) Detection of myocardial ischemia: value of combined myocardial perfusion and cineangiographic MR imaging. AJR Am J Roentgenol 163:1061–1067

    PubMed  Google Scholar 

  • Herijgers P, Laycock SK, Ni Y et al (1997) Localization and determination of infarct size by Gd-mesoporphyrin enhanced MRI in dogs. Int J Cardiac Imaging 13:499–507

    Article  Google Scholar 

  • Heusch G (1998) Hibernating myocardium. Phys Rev 78:1055–1077

    Google Scholar 

  • Higgins CB, Herfkens R, Lipton MJ et al (1983) Nuclear magnetic resonance imaging of acute myocardial infarction in dogs: alterations in magnetic relaxation times. Am J Cardiol 52:184–188

    Article  PubMed  Google Scholar 

  • Hillenbrand HB, Kim RJ, Parker MA et al (2000) Early assessment of myocardial salvage by contrast-enhanced magnetic resonance imaging. Circulation 102:1678–1683

    PubMed  Google Scholar 

  • Holman ER, van Jonbergen HP, van Dijkman PR et al (1993) Comparison of magnetic resonance imaging studies with enzymatic indexes of myocardial necrosis for quantification of myocardial infarct size. Am J Cardiol 71:1036–1040

    Article  PubMed  Google Scholar 

  • Holman ER, van Rossum AC, Doesburg T et al (1996) Assessment of acute myocardial infarction in man with magnetic resonance imaging and the use of a new paramagnetic contrast agent gadolinium-BOPTA. Magn Reson Imaging 14:21–29

    Article  PubMed  Google Scholar 

  • Hundley WG, Hamilton CA, Clarke GD, Hillis LD, Herrington DM, Lange RA, Applegate RJ, Thomas MS, Payne J, Link KM, Peshock RM (1999) Visualization and functional assessment of proximal and middle left anterior descending coronary stenoses in humans with magnetic resonance imaging. Circulation 99:3248–3254

    PubMed  Google Scholar 

  • Hundley WG, Morgan TM, Neagle CM, Hamilton CA, Rerkpattanapipat P, Link KM (2002) Magnetic resonance imaging determination of cardiac prognosis. Circulation 106:2328–2333

    Article  PubMed  Google Scholar 

  • Ito H, Tomooka T, Sakai N (1992) Lack of myocardial perfusion immediately after successful thrombolysis. A predictor of poor recovery of left ventricular function in anterior myocardial infarction. Circulation 85:1699–1705

    PubMed  Google Scholar 

  • Ito H, Maruyama A, Iwakura K (1996) Clinical implications of the ‘no-reflow’ phenomenon. A predictor of complications and left ventricular remodeling in reperfused anterior wall myocardial infarction. Circulation 93:223–228

    PubMed  Google Scholar 

  • Jennings RB, Hawkins HK, Lowe JE, et al (1978) Relation between high-energy phosphate and lethal injury in myocardial ischemia in the dog. Am J Pathol 92:187–214

    PubMed  Google Scholar 

  • Johnston DL, Brady TJ, Ratner AV et al (1985) Assessment of myocardial ischemia with proton magnetic resonance: effects of a three hour coronary occlusion with and without reperfusion. Circulation 71:595–601

    PubMed  Google Scholar 

  • Judd RM, Lugo-Olivieri CH, Arai M, et al (1995a) Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2-day-old reperfused canine infarcts. Circulation 92:1902–1910

    PubMed  Google Scholar 

  • Judd RM, Atalay MK, Rottman GA et al (1995b) Effects of myocardial water exchange on T1 enhancement during bolus administration of MR contrast agents. Magn Reson Med 33:215–223

    PubMed  Google Scholar 

  • Keeley EC, Hillis LD (1996) Left ventricular mural thrombus after acute myocardial infarction. Clin Cardiol 19:83–86

    PubMed  Google Scholar 

  • Kellman P, Arai AE, McVeigh ER et al (2002) Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn Reson Med 47:372–383

    Article  PubMed  Google Scholar 

  • Kellman P, Dyke CK, Aletras AH et al (2004) Artifact suppression in imaging of myocardial infarction using B1-weighted phased-array combined phase-sensitive inversion recovery dagger. Magn Reson Med 51:408–412

    Article  PubMed  Google Scholar 

  • Kim RJ, Chen EL, Lima JA, Judd RM (1996) Myocardial Gd-DTPA kinetics determine MRI contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction. Circulation 94:3318–3326

    PubMed  Google Scholar 

  • Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, Bundy J, Finn JP, Klocke FJ, Judd RM (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100:1992–2002

    PubMed  Google Scholar 

  • Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, Klocke FJ, Bonow RO, Judd RM (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453

    Article  PubMed  Google Scholar 

  • Klein C, Nekolla SG, Bengel FM et al (2002) Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging. Comparison with positron emission tomography. Circulation 105:162–167

    Article  PubMed  Google Scholar 

  • Kloner RA, Jennings RB (2001) Consequences of brief ischemia: stunning, preconditioning and their clinical implications. Circulation 104:2981–2989

    PubMed  Google Scholar 

  • Kloner RA, Ganote CE, Jennings RB (1974) The ‘no-reflow’ phenomenon after temporary coronary occlusion in the dog. J Clin Invest 54:1496–1508

    PubMed  Google Scholar 

  • Knuesel PR, Nanz D, Wyss C et al (2003) Characterization of dysfunctional myocardium by positron emission tomography and magnetic resonance: relation to functional outcome after revascularization. Circulation 108:1095–1100

    Article  PubMed  Google Scholar 

  • Kraitchman DL, Sampath S, Castillo E et al (2003) Quantitative ischemia detection during cardiac magnetic resonance stress testing by use of FastHARP. Circulation 107:2025–2030

    Article  PubMed  Google Scholar 

  • Kramer CM, Lima JA, Reichek N et al (1993) Regional differences in function within noninfarcted myocardium during left ventricular remodeling. Circulation 88:1279–1288

    PubMed  Google Scholar 

  • Kramer CM, Rogers WJ, Theobald TM et al (1996a) Remote noninfarcted regional dysfunction soon afterfirst anterior myocardial infarction. A magnetic resonance tagging study. Circulation 94:660–666

    PubMed  Google Scholar 

  • Kramer CM, Ferrari VA, Rogers WJ et al (1996b) Angiotensin-converting enzyme inhibition limits dysfunction in adjacent noninfarcted regions during left ventricular remodeling. J Am Coll Cardiol 27:211–217

    Article  PubMed  Google Scholar 

  • Kühl HP, Beek AM, van der Weerdt AP et al (2003) Myocardial viability in chronic ischemic heart disease: comparison of contrast-enhanced magnetic resonance imaging with (18)F-fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 41:1341–1348

    Article  PubMed  Google Scholar 

  • Kühl HP, Papavasilliu TS, Beek AM et al (2004) Myocardial viability: rapid assessment with delayed contrast-enhanced MR imaging with three-dimensional inversion-recovery prepared pulse sequence. Radiology 230:576–582

    PubMed  Google Scholar 

  • Kuijpers D, Yiu K, Dijkman PRM van et al (2003) Dobutamine cardiovascular magnetic resonance for the detection of myocardial ischemia with the use of myocardial tagging. Circulation 107:1592–1597

    PubMed  Google Scholar 

  • Kwong RY, Schussheim AE, Rekhraj S et al (2003) Detecting acute coronary syndrome in the emergency department with cardiac magnetic resonance imaging. Circulation 107:531–537

    Article  PubMed  Google Scholar 

  • Lauterbur PC, Dias MM, Rudin AM (1978) Augmentation of tissue water proton spin-lattice relaxation rates by in vivo addition of paramagnetic ions. In: Dutton PL, Leigh JS, Scarpa A (eds) International symposium on frontiers of biological energetics of electrons to tissues. Academic, New York, pp 752–759

    Google Scholar 

  • Lee JT, Ideker RE, Reimer KA (1981) Myocardial infarct size and ocation in relation to the coronary vascular bed at risk in man. Circulation 64:526–534

    PubMed  Google Scholar 

  • Lewis S, Sawada S, Ryan T et al (1991) Segmental wall motion abnormalities in the absence of clinically documented myocardial infarction: clinical significance and evidence of hibernating myocardium. Am Heart J 121:1088–1094

    Article  PubMed  Google Scholar 

  • Liedtke AJ (1981) Alteration of carbohydrate and lipid metabolism in the acutely ischemic heart. Prog Cardiovasc Dis 23:321–336

    Article  PubMed  Google Scholar 

  • Lima JA, Judd RM, Bazille A, Schulman SP, Atalar E, Zerhouni EA (1995) Regional heterogeneity of human myocardial infarcts demonstrated by contrast-enhanced MRI. Potential mechanisms. Circulation 92:1117–1125

    PubMed  Google Scholar 

  • Lindner JR, Kaul S (1996) Assessment of myocardial viability with two-dimensional echocardiography and magnetic resonance imaging. J Nucl Cardiol 3:167–182

    Article  PubMed  Google Scholar 

  • Maes A, Flameng W, Nuyts J et al (1994) Histological alterations in chronically hypoperfused myocardium: correlation with PET findings. Circulation 90:735–745

    PubMed  Google Scholar 

  • Mahrholdt H, Wagner A, Holly TA et al (2002) Reproducibility of chronic infarct size measurement by contrast-enhanced magnetic resonance imaging. Circulation 106:2322–2327

    Article  PubMed  Google Scholar 

  • Mahrholdt H, Goedecke C, Wagner A et al (2004) Cardiovascular magnetic resonance assessment of human myocarditis. A comparison to histology and molecular biology. Circulation 109:1250–1258

    Article  PubMed  Google Scholar 

  • Matheijssen NA, de Roos A, van der Wall EE et al (1991) Acute myocardial infarction: comparison of T2-weighted and T1-weighted gadolinium-DTPA enhanced MR imaging. Magn Reson Med 17:460–469

    PubMed  Google Scholar 

  • Matsumura K, Jeremy RW, Schaper J et al (1998) Progression of myocardial necrosis during reperfusion of ischemic myocardium. Circulation 97:795–804

    PubMed  Google Scholar 

  • McNamara MT, Wesbey GE, Brasch RC et al (1985) Magnetic resonance imaging of acute myocardial infarction using a nitroxyl spin label (PCA). Invest Radiol 20:591–595

    PubMed  Google Scholar 

  • McNamara MT, Tscholakoff D, Revel D et al (1986) Differentiation of reversible and irreversible myocardial injury by MR imaging with and without gadolinium-DTPA. Radiology 158:765–769

    PubMed  Google Scholar 

  • Mollet NR, Dymarkowski S, Volders W et al (2002) Visualization of ventricular thrombi with contrast-enhanced magnetic resonance imaging in patients with ischemic heart disease. Circulation 106:2873–2876

    Article  PubMed  Google Scholar 

  • Nageh T, Sherwood RA, Harris BM et al (2003) Cardiac troponin T and I and creatine kinase-MB as markers of myocardial injury and predictors of outcome following percutaneous coronary intervention. Int J Cardiol 92:285–293

    Article  PubMed  Google Scholar 

  • Nagel E, Lehmkuhl HB, Bocksch W et al (1999) Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation 99:763–770

    PubMed  Google Scholar 

  • Neill W, Ingwall J, Andrews E et al (1986) Stabilization of the derangement in adenosine triphosphate metabolism during sustained, partial ischemia in the dog heart. J Am Coll Cardiol 8:894–900

    PubMed  Google Scholar 

  • Ni Y, Marchal G, Yu J et al (1995) Localization of metallopor-phyrin induced “specific” enhancement in experimental liver tumors: comparison of magnetic resonance imaging, microangiographic and histologic findings. Acad Radiol 2:687–699

    PubMed  Google Scholar 

  • Ni Y, Petré C, Miao Y et al (1997) Magnetic resonance imaging — histomorphologic correlation studies on paramagnetic metalloporphyrins in rat models of necrosis. Invest Radiol 32:770–779

    Article  PubMed  Google Scholar 

  • Ni Y, Pislaru C, Bosmans H et al (1998) Validation of intracoronary delivery of metalloporphyrin as an in vivo “histochemical staining” for myocardial infarction with MR imaging. Acad Radiol 5[Suppl 1]:537–541

    Google Scholar 

  • Nienaber CA, Brunken RC, Sherman CT (1991) Metabolic and functional recovery of ischemic human myocardium after coronary angioplasty. J Am Coll Cardiol 18:966–978

    PubMed  Google Scholar 

  • Nishimura T, Kobayashi H, Ohara Y et al (1989) Serial assessment of myocardial infarction by using gated MR imaging and Gd-DTPA. AJR Am J Roentgenol 153:715–720

    PubMed  Google Scholar 

  • Ogan M, Revel D, Brasch R (1997) Metalloporphyrin contrast enhancement of tumors in magnetic resonance imaging. A study of human carcinoma, lymphoma, and fibrosarcoma in mice. Invest Radiol 22:822–828

    Google Scholar 

  • Oshinski JN, Yang, Z, Jones JR et al (2001) Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging. Circulation 104:2838–2842

    PubMed  Google Scholar 

  • Panting JR, Gatehouse PD, Yang GZ et al (2002) Abnormal subendocardial perfusion in cardiac syndrome×detected by cardiovascular magnetic resonance imaging. N Engl J Med 346:1948–1953

    Article  PubMed  Google Scholar 

  • Patterson RE, Jones-Collins BA, Aamodt R et al (1993) Differences in collateral myocardial blood flow following gradual vs abrupt coronary occlusion. Cardiovasc Res 17:207–213

    Google Scholar 

  • Pennell DJ, Underwood SR, Manzara CC et al (1992) Magnetic resonance imaging during dobutamine stress in coronary artery disease. Am J Cardiol 70:34–40

    Article  PubMed  Google Scholar 

  • Pennell DJ, Firmin DN, Burger P et al (1995) Assessment of magnetic resonance velocity mapping of global ventricular function during dobutamine infusion in coronary artery disease. Br Heart J 74:163–170

    PubMed  Google Scholar 

  • Pislaru SV, Ni Y, Pislaru C et al (1999) Noninvasive measurements of infarct size after thrombolysis with a necrosisavid MRI contrast agent. Circulation 99:690–696

    PubMed  Google Scholar 

  • Plein S, Ridgway JP, Jones TR et al (2002) Coronary artery disease: assessment with a comprehensive MR imaging protocol — initial results. Radiology 225:300–307

    PubMed  Google Scholar 

  • Pohost GM, Biederman RW (1999) The role of cardiac MRI stress testing. Circulation 100:1676–1679

    PubMed  Google Scholar 

  • Pomeroy OH, Wendland M, Wagner S et al (1989) Magnetic resonance imaging of acute myocardial ischemia using a manganese chelate, Mn-DPDP. Invest Radiol 24:531–536

    PubMed  Google Scholar 

  • Rademakers FE, Marchal G, Mortelmans L et al (2003) Evolution of regional performance after an acute myocardial infarction in humans using magnetic resonance tagging. J Physiol (Lond) 546:777–787

    Article  PubMed  Google Scholar 

  • Rahimtoola SH (1989) The hibernating myocardium. Am Heart J 117:211–220

    Article  PubMed  Google Scholar 

  • Ramani K, Judd RM, Holly TA et al (1998) Contrast magnetic resonance imaging in the assessment of myocardial viability in patients with stable coronary artery disease and left ventricular dysfunction. Circulation 98:2687–2694

    PubMed  Google Scholar 

  • Rehr RB, Peshock RM, Malloy CR (1986) Improved in vivo magnetic resonance imaging of acute myocardial infarction after intravenous paramagnetic contrast agent administration. Am J Cardiol 57:864–868

    Article  PubMed  Google Scholar 

  • Reimer KA, Jennings RB (1970) The wavefront progression of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest 40:633–644

    Google Scholar 

  • Reimer KA, Jennings RB (1979) The changing anatomic reference base of evolving myocardial infarction. Circulation 60:866–876

    PubMed  Google Scholar 

  • Rerkpattanapipat P, Morgan TM, Neagle CM et al (2002) Assessment of preoperative cardiac risk with magnetic resonance imaging. Am J Cardiol 90:416–419

    Article  PubMed  Google Scholar 

  • Ricciardi MJ, Wu E, Davidson CJ (2001) Visualization of discrete microinfarction after percutaneous coronary intervention associated with mild creatine kinase-MB elevation. Circulation 103:2780–2783

    PubMed  Google Scholar 

  • Rivas F, Cobb FR, Bache RJ, Greenfield JC (1976) Relationship between blood flow to ischemic regions and extent of myocardial infarction. Circ Res 38:439–447

    PubMed  Google Scholar 

  • Rochitte CE, Lima JA, Bluemke DA et al (1998) Magnitude and time course of microvascular obstruction and tissue injury after acute myocardial infarction. Circulation 98:1006–1014

    PubMed  Google Scholar 

  • Rogers WJ, Kramer CM, Geskin G et al (1999) Early contrast-enhanced MRI predicts late functional recovery after reperfused myocardial infarction. Circulation 99:744–750

    PubMed  Google Scholar 

  • Rokey R, Verani MS, Bolli R et al (1986) Myocardial infarct size quantification by MR imaging early after coronary artery occlusion in dogs. Radiology 158:771–774

    PubMed  Google Scholar 

  • Ross J Jr (1991) Myocardial perfusion-contraction matching: implications for coronary heart disease and hibernation. Circulation 83:1076–1082

    PubMed  Google Scholar 

  • Ruffolo RR Jr (1987) The pharmacology of dobutamine. Am J Med Sci 294:244–248

    PubMed  Google Scholar 

  • Saeed M, Wagner S, Wendland MF et al (1989) Occlusive and reperfused myocardial infarcts: differentiation with Mn-DPDP-enhanced MR imaging. Radiology 172:59–64

    PubMed  Google Scholar 

  • Saeed M, Bremerich J, Wendland MF et al (1999) Reperfused myocardial infarction as seen with use of necrosis-specific versus standard extracellular MR contrast media in rats. Radiology 213:247–257

    PubMed  Google Scholar 

  • Saeed M, Wendland MF, Watzinger N et al (2000) MR contrast media for myocardial viability, microvascular integrity and perfusion. Eur J Radiol 34:179–195

    Article  PubMed  Google Scholar 

  • Saeed M, Lund G, Wendland MF et al (2001) Magnetic resonance characterization of the peri-infarction zone of reperfused myocardial infarction with necrosis-specific and extracellular nonspecific contrast media. Circulation 10:871–876

    Google Scholar 

  • Sandstede JJ (2003) Assessment of myocardial viability by MR imaging. Eur Radiol 13:52–61

    PubMed  Google Scholar 

  • Sandstede JJ, Lipke C, Beer M et al (2000) Analysis of first-pass and delayed contrast-enhancement patterns of dysfunctional myocardium on MR imaging: use in the prediction of myocardial viability. AJR Am J Roentgenol 174:1737–1740

    PubMed  Google Scholar 

  • Schaefer S, Malloy CR, Katz J et al (1988) Gadolinium-DTPA-enhanced nuclear magnetic resonance imaging of reperfused myocardium: identification of the myocardial bed at risk. J Am Coll Cardiol 12:1064–1072

    PubMed  Google Scholar 

  • Schiller NB, Shah PM, Crawford M et al (1989) Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee of Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr 2:358–367

    PubMed  Google Scholar 

  • Schulz-Menger J, Gross M, Messroghli D et al (2003) Cardiovascular magnetic resonance of acute myocardial infarction at a very early stage. J Am Coll Cardiol 42:513–518

    Article  PubMed  Google Scholar 

  • Senior R, Lahiri A (1995) Enhanced detection of myocardial ischemia by stress dobutamine echocardiography utilizing the “biphasic” response of wall thickening during low and high dose dobutamine infusion. J Am Coll Cardiol 26:26–32

    Article  PubMed  Google Scholar 

  • Sensky PR, Jivan A, Hudson NM et al (2000) Coronary artery disease: combined stress MR imaging protocol — one stop evaluation of myocardial perfusion and function. Radiology 215:608–614

    PubMed  Google Scholar 

  • Shah DP, Kim HW, Elliot M et al (2004) Contrast MRI predicts reverse remodeling and contractile improvement in akinetic thinned myocardium. J Cardiovasc Magn Reson 5:66 (abstract)

    Google Scholar 

  • Simonetti OP, Kim RJ, Fieno DS et al (2001) An improved MR imaging technique for the visualization of myocardial infarction. Radiology 218:215–223

    PubMed  Google Scholar 

  • Sklenar J, Villanueva FS, Glasheen WP et al (1994) Dobutamine echocardiography for determining the extent of myocardial salvage after reperfusion: an experimental evaluation. Circulation 90:1503–1512

    Google Scholar 

  • Sutton MGSJ, Sharpe N (2000) Left ventricular remodeling after myocardial infarction. Pathophysiology and therapy. Circulation 101:2981–2988

    PubMed  Google Scholar 

  • Thiele H, Nagel E, Paetsch I et al (2001) Functional cardiac MR imaging with steady-state free precession (SSFP) significantly improves endocardial border delineation without contrast agents. J Magn Reson Imaging 14:362–367

    Article  PubMed  Google Scholar 

  • Tscholakoff D, Higgins CB, Sechtem U et al (1986) Occlusive and reperfused myocardial infarcts: effect of Gd-DTPA on ECG-gated MR imaging. Radiology 160:515–519

    PubMed  Google Scholar 

  • Van Dijkman PR, van der Wall EE, de Roos A et al (1991) Acute, subacute, and chronic myocardial infarction: quantitative analysis of gadolinium-enhanced MR images. Radiology 180:147–151

    PubMed  Google Scholar 

  • Van Hoe L, Vanderheyden M (2004) Ischemic cardiomyopathy: value of different MRI techniques for prediction of functional recovery after revascularization. Am J Roentgenol 182:95–100

    Google Scholar 

  • Vanoverschelde J-LJ, Wijns W, Borgers M et al (1997) Chronic myocardial hibernation in humans: from bedside to bench. Circulation 95:1961–1971

    PubMed  Google Scholar 

  • Van Rugge FP, Holman ER, van der Wall EE et al (1993) Quantitation of global and regional left ventricular function by cine magnetic resonance imaging during dobutamine stress in normal human subjects. Eur Heart J 14:456–463

    PubMed  Google Scholar 

  • Van Rugge FP, van der Wall EE, Spanjersberg SJ, et al (1994) Magnetic resonance imaging during dobutamine stress for detection and localization of coronary artery disease. Quantitative wall motion analysis using a modification of the centerline method. Circulation 90:127–138

    PubMed  Google Scholar 

  • Van Zijl PCM, Place DA, Cohen JS et al (1990) Metalloporphyrin magnetic resonance contrast agents: feasibility of tumor-specific magnetic resonance imaging. Acta Radiol 374:75–79

    Google Scholar 

  • Vogel JHK (1987) Determinants of improved left ventricular function after thrombolytic therapy in acute myocardial infarction. J Am Coll Cardiol 9:937–944

    PubMed  Google Scholar 

  • Wagner A, Mahrholdt H, Holly TA (2003) Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 361:374–379

    Article  PubMed  Google Scholar 

  • Wahl A, Gollesch A, Paetsch I et al (2003) Safety and feasibility of high-dose dobutamine-atropine stress MRI for diagnosis of myocardial ischemia: experience in 1000 consecutive cases. J Cardiovasc Magn Reson 5:51 (abstract)

    Google Scholar 

  • Weinmann HJ, Brasch RC, Press WR et al (1984) Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. Am J Roentgenol 142:619–624

    Google Scholar 

  • Weissleder R, Lee A, Khaw B et al (1992) Antimyosin-labeled monocrystalline iron oxide allows detection of myocardial infarct: MR antibody imaging. Radiology 182:381–385

    PubMed  Google Scholar 

  • Wellnhofer E, Olariu A, Klein C et al (2004) Magnetic resonance low-dose dobutamine test is superior to scar quantification for the prediction of functional recovery. Ciculation 109:2172–2174

    Article  Google Scholar 

  • Whiteman G, Kieval R, Wetstein L et al (1983) The relationship between global myocardial redox state and high energy phosphate profile: a phosphorous-31 nuclear magnetic resonance study. J Surg Res 35:332–339

    Article  PubMed  Google Scholar 

  • Williams ES, Kaplan JI, Thatcher F et al (1980) Prolongation of proton spin lattice relaxation times in regionally ischemic tissue from dog hearts. J Nucl Med 21:449–453

    PubMed  Google Scholar 

  • Wilke N, Jerosch-Herold M, Wang Y et al (1997) Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging. Radiology 204:373–384

    PubMed  Google Scholar 

  • Wisenberg G, Pflugfelder PW, Kostuk WJ et al (1987) Diagnostic applicability of magnetic resonance imaging in assessing human cardiac allograft rejection. Am J Cardiol 60:130–136

    Article  PubMed  Google Scholar 

  • Wisenberg G, Prato FS, Carroll SE et al (1988) Serial nuclear magnetic resonance imaging of acute myocardial infarction with and without reperfusion. Am Heart J 115:510–518

    Article  PubMed  Google Scholar 

  • Wolf GL, Baum L (1983) Cardiovascular toxicity and tissue proton T1 response to manganese injection in the dog and rabbit. AJR Am J Roentgenol 141:193–197

    PubMed  Google Scholar 

  • Wu E, Judd RM, Vargas JD (2001) Visualisation of presence, location, and transmural extent of healed Q-wave and non-Q-wave myocardial infarction. Lancet 357:21–28

    Article  PubMed  Google Scholar 

  • Yokota C, Nonogi H, Miyazaki S (1995) Gadolinium-enhanced magnetic resonance imaging in acute myocardial infarction. Am J Cardiol 75:577–581

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dymarkowski, S., Bogaert, J., Ni, Y. (2005). Ischemic Heart Disease. In: Bogaert, J., Dymarkowski, S., Taylor, A.M. (eds) Clinical Cardiac MRI. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26997-5_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-26997-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40170-4

  • Online ISBN: 978-3-540-26997-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics