Skip to main content

Imaging of Great Vessels

  • Chapter
  • 1762 Accesses

Part of the book series: Medical Radiology

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ACR Practice Guideline for the Performance of Cardiovascular Magnetic Resonance Imaging (MRI) (2003)

    Google Scholar 

  • Akins EW, Slone RM, Wiechmann BN, et al (1991) Perivalvular pseudoaneurysm complicating bacterial endocarditis: MR detection in five cases. AJR Am J Roentgenol 156:1155–1158

    PubMed  Google Scholar 

  • Amparo EG, Higgins CB, Hricak H, Sollitto R (1985) Aortic dissection: magnetic resonance imaging. Radiology 155:399–406

    PubMed  Google Scholar 

  • Araoz PA, Reddy GP, Tarnoff H, Roge CL, Higgins CB (2003) MR findings of collateral circulation are more accurate measures of hemodynamic significance than arm-leg blood pressure gradient after repair of coarctation of the aorta. J Magn Reson Imaging 17:177–183

    PubMed  Google Scholar 

  • Arpasi PJ, Bis KG, Shetty AN, White RD, Simonetti OP (2000) MR angiography of the thoracic aorta with an electrocardiographically triggered breath-hold contrast-enhanced sequence. Radiographics 20:107–120

    PubMed  Google Scholar 

  • Beekman RP, Hazekamp MG, Sobotka MA et al (1998) A new diagnostic approach to vascular rings and pulmonary slings: the role of MRI. Magn Reson Imaging 16:137–145

    Article  PubMed  Google Scholar 

  • Berdon WE (2000) Rings, slings, and other things: vascular compression of the infant trachea updated from the midcentury to the millennium — the legacy of Robert E. Gross, MD, and Edward B. D. Neuhauser, MD. Radiology 216:624–632

    PubMed  Google Scholar 

  • Bogaert J, Gewillig M, Rademakers F et al (1995) Transverse arch hypoplasia predisposes to aneurysm formation at the repair site after patch angioplasty for coarctation of the aorta. J Am Coll Cardiol 26:521–527

    Article  PubMed  Google Scholar 

  • Bogaert J, Meyns B, Rademakers F et al (1997) Aortic dissection: contribution of MR angiography for evaluation of the abdominal aorta and its branches. Eur Radiol 7:695–702

    PubMed  Google Scholar 

  • Bogaert J, Kuzo R, Dymarkowski S et al (2000) Follow-up of patients with previous treatment for coarctation of the thoracic aorta: comparison between contrast-enhanced MR angiography and fast SE MR imaging. Eur Radiol 10:1847–1854

    Article  PubMed  Google Scholar 

  • Bogaert J Dymarkowski S, Budts W, Daenen W, Gewillig M (2001) Graft dilatation after redo surgery for aneurysm formation following patch angioplasty for coarctation of the aorta. Eur J Thorac Cardiovasc Surg 19: 274–278

    Article  Google Scholar 

  • Brierley J, Redington AN, Anderson RH, et al (2001) Paediatric cardiology, 2nd edn, chap 56. Churchill Livingstone, Edinburgh, pp 1523–1551

    Google Scholar 

  • Canter CE, Gutierrez FR, Mirowitz SA, Martin TC, Hartmann AF Jr (1989) Evaluation of pulmonary arterial morphology in cyanotic congenital heart disease by magnetic resonance imaging. Am Heart J 118:347–354

    Article  PubMed  Google Scholar 

  • Carpenter JP, Holland GA, Baum RA, et al (1993) Magnetic resonance venography for the detection of deep venous thrombosis: comparison with contrast venography and duplex Doppler ultrasonography. J Vasc Surg 18:734–741

    PubMed  Google Scholar 

  • Carr J, Finn JP (2003) MR imaging of the thoracic aorta. Magn Reson Imaging Clin North Am 11:135–148

    Article  Google Scholar 

  • Carr J, Simonetti O, Bundy J et al (2001) Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology 219:828–834

    PubMed  Google Scholar 

  • Choudhury RP, Fuster V, Badimon JJ, Fisher EA, Fayad ZA (2002) MRI and characterization of atherosclerotic plaque: emerging applications and molecular imaging. Arterioscler Thromb Vasc Biol 22:1065–1074

    Article  PubMed  Google Scholar 

  • Chung T (2000) Assessment of cardiovascular anatomy in patients with congenital heart disease by magnetic resonance imaging. Pediatr Cardiol 21:18–26

    Article  PubMed  Google Scholar 

  • Crafoord C (1980) Classics in thoracic surgery. Correction of aortic coarctation. Ann Thorac Surg 30:300–302

    PubMed  Google Scholar 

  • Dake MD, Miller DC, Mitchell RS, et al (1998) The “first generation” of endovascular stent-grafts for patients with aneurysms of the descending thoracic aorta. J Thorac Cardiovasc Surg 116:689–704

    PubMed  Google Scholar 

  • DeBakey ME, Henly WS, Cooley DA et al (1965) Surgical management of dissecting aneurysms of the aorta. J Thorac Cardiovasc Surg 49:130–148

    PubMed  Google Scholar 

  • Debatin JF, Hany TF (1998) MR-based assessment of vascular morphology and function. Eur Radiol 8:528–539.

    Article  PubMed  Google Scholar 

  • Didier D, Ratib O, Beghetti M, Oberhaensli I, Friedli B (1999) Morphologic and functional evaluation of congenital heart disease by magnetic resonance imaging. J Magn Reson Imaging 10:639–655

    Article  PubMed  Google Scholar 

  • Dietl CA, Torres AR, Favaloro RG, Fessler CL, Grunkemeier GL (1992) Risk of recoarctation in neonates and infants after repair with patch aortoplasty, subclavian flap, and the combined resection-flap procedure. J Thorac Cardiovasc Surg 103:724–732

    PubMed  Google Scholar 

  • Dymarkowski S, Bosmans H, Marchal G, Bogaert J (1999) 3D MR angiography of thoracic outlet. Am J Roentgenol 173:1005–1008

    Google Scholar 

  • Earls JP, Rofsky NM, DeCorato DR, Krinsky GA, Weinreb JC (1996) Breath-hold single-dose gadolinium-enhanced three-dimensional MR aortography: usefulness of a timing examination and MR power injector. Radiology 201:705–710

    PubMed  Google Scholar 

  • Edwards JE (1948) Anomalies of the derivatives of the aortic arch system. Med Clin North Am 33:925–949

    Google Scholar 

  • Engellau L, Olsrud J, Brockstedt S et al (2000) MR evaluation ex vivo and in vivo of a covered stent-graft for abdominal aortic aneurysms: ferromagnetism, heating, artifacts, and velocity mapping. J Magn Reson Imaging 12:112–121

    Article  PubMed  Google Scholar 

  • Erbel R, Alfonso F, Boileau C et al (2001) Diagnosis and management of aortic dissection. Recommendations of the Task Force on Aortic Dissection, European Society of Cardiology. Eur Heart J 22:1642–1681

    Article  PubMed  Google Scholar 

  • Evangelista A, Avegliano G, Elorz C, et al (2002) Transesophageal echocardiography in the diagnosis of acute aortic syndrome. J Card Surg 17:95–106

    PubMed  Google Scholar 

  • Fatouraee N, Amini AA (2003) Regularization of flow streamlines in multislice phase-contrast MR imaging. IEEE Trans Med Imaging 22:699–709

    Article  PubMed  Google Scholar 

  • Fattori R, Nienaber CA (1999) MRI of acute and chronic aortic pathology: pre-operative and post-operative evaluation. J Magn Reson Imaging 10:741–750

    Article  PubMed  Google Scholar 

  • Fattori R, Celletti F, Bertaccini P et al (1996) Delayed surgery of traumatic aortic rupture. Role of magnetic resonance imaging. Circulation 94:2865–2870

    PubMed  Google Scholar 

  • Fattori R, Bacchi Reggiani L, Pepe G et al (2000) Magnetic resonance imaging evaluation of aortic elastic properties as early expression of Marfan syndrome. J Cardiovasc Magn Reson 2:251–256

    PubMed  Google Scholar 

  • Fattori R, Napoli G, Lovato L et al (2003) Descending thoracic aortic diseases: stent-graft repair. Radiology 229:176–183

    PubMed  Google Scholar 

  • Fayad ZA (2003) MR imaging for the noninvasive assessment of atherothrombotic plaques. Magn Reson Imaging Clin North Am 11:101–113

    Article  Google Scholar 

  • Finn JP, Baskaran V, Carr JC et al (2002) Thorax: low-dose contrast-enhanced three-dimensional MR angiography with subsecond temporal resolution — initial results. Radiology 224:896–904

    PubMed  Google Scholar 

  • Flacke S, Fischer S, Scott MJ et al (2001) Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation 104:1280–1285

    PubMed  Google Scholar 

  • Francois CJ, Shors SM, Bonow RO, Finn JP (2003) Analysis of cardiopulmonary transit times at contrast material-enhanced MR imaging in patients with heart disease. Radiology 227:447–452

    PubMed  Google Scholar 

  • Gaubert JY, Moulin G, Mesana T et al (1995) Type A dissection of the thoracic aorta: use of MR imaging for long-term follow-up. Radiology 196:363–369

    PubMed  Google Scholar 

  • Gomes AS, Lois JF, George B, Alpan G, Williams RG (1987) Congenital abnormalities of the aortic arch: MR imaging. Radiology 165:691–695

    PubMed  Google Scholar 

  • Goyen M, Ruehm SG, Debatin JF (2000) MR-angiography: the role of contrast agents. Eur J Radiol 34:247–256

    Article  PubMed  Google Scholar 

  • Greil GF, Powell AJ, Gildein HP, Geva T (2002) Gadolinium-enhanced three-dimensional magnetic resonance angiography of pulmonary and systemic venous anomalies. J Am Coll Cardiol 39:335–341

    Article  PubMed  Google Scholar 

  • Grist TM, Sostman HD, MacFall JR et al (1993) Pulmonary angiography with MR imaging: preliminary clinical experience. Radiology 189:523–530

    PubMed  Google Scholar 

  • Groenink M, Roos A de, Mulder BJ et al (2001) Biophysical properties of the normal-sized aorta in patients with Marfan syndrome: evaluation with MR flow mapping. Radiology 219:535–540

    PubMed  Google Scholar 

  • Gundry SR, Burney RE, Mackenzie JR, et al (1984) Traumatic pseudoaneurysms of the thoracic aorta. Anatomic and radiologic correlations. Arch Surg 119:1055–1060

    PubMed  Google Scholar 

  • Hagan PG, Nienaber CA, Isselbacher EM et al (2000) The International Registry of Acute Aortic Dissection (IRAD): new insights into an old disease. JAMA 283:897–903

    Article  PubMed  Google Scholar 

  • Hamdan MA, Maheshwari S, Fahey JT, Hellenbrand WE (2001) Endovascular stents for coarctation of the aorta: initial results and intermediate-term follow-up. J Am Coll Cardiol 38:1518–1523

    Article  PubMed  Google Scholar 

  • Hartnell GG (2001) Imaging of aortic aneurysms and dissections: CT and MRI. J Thorac Imaging 16:35–46

    Article  PubMed  Google Scholar 

  • Hartnell GG, Finn JP, Zenni M et al (1994) MR imaging of the thoracic aorta: comparison of spin-echo, angiographic, and breath-hold techniques. Radiology 191:697–704

    PubMed  Google Scholar 

  • Hartnell GG, Hughes LA, Finn JP, Longmaid HE 3rd (1995) Magnetic resonance angiography of the central chest veins. A new gold standard? Chest 107:1053–1057

    PubMed  Google Scholar 

  • Hegde SR, Taylor AM, Muthurangu VM, Miquel ME, Razavi R (2004) The use of MRI in detecting pulmonary vein compression in patients with Fontan circulation. ECR Conf Proc [Suppl 2] 14:B–531

    Google Scholar 

  • Hernandez RJ (2002) Magnetic resonance imaging of mediastinal vessels. Magn Reson Imaging Clin North Am 10:237–251

    Article  Google Scholar 

  • Higgins CB, Caputo GR (1993) Role of MR imaging in acquired and congenital cardiovascular disease. AJR Am J Roentgenol 161:13–22

    PubMed  Google Scholar 

  • Higgins CB, Sakuma H (1996) Heart disease: functional evaluation with MR imaging. Radiology 199:307–315

    PubMed  Google Scholar 

  • Hilfiker PR, Quick HH, Pfammatter T, Schmidt M, Debatin JF (1999) Three-dimensional MR angiography of a nitinol-based abdominal aortic stent graft: assessment of heating and imaging characteristics. Eur Radiol 9:1775–1780

    Article  PubMed  Google Scholar 

  • Ho VB, Foo TK (1998) Optimization of gadolinium-enhanced magnetic resonance angiography using an automated bolus-detection algorithm (MR SmartPrep). Original investigation. Invest Radiol 33:515–523

    Article  PubMed  Google Scholar 

  • Ho VB, Choyke PL, Foo TK et al (1999) Automated bolus chase peripheral MR angiography: initial practical experiences and future directions of this work-in-progress. J Magn Reson Imaging 10:376–388

    Article  PubMed  Google Scholar 

  • Holmqvist C, Stahlberg F, Hanseus K et al (2002) Collateral flow in coarctation of the aorta with magnetic resonance velocity mapping: correlation to morphological imaging of collateral vessels. J Magn Reson Imaging 15:39–46

    Article  PubMed  Google Scholar 

  • Kaemmerer H, Theissen P, Konig U, Sechtem U, Vivie ER de (1993) Follow-up using magnetic resonance imaging in adult patients after surgery for aortic coarctation. Thorac Cardiovasc Surg 41:107–111

    PubMed  Google Scholar 

  • Kanne JP, Lalani TA (2004) Role of computed tomography and magnetic resonance imaging for deep venous thrombosis and pulmonary embolism. Circulation [Suppl 1] 109:15–21

    Article  Google Scholar 

  • Kersting-Sommerhoff BA, Sechtem UP, Fisher MR, Higgins CB (1987a) MR imaging of congenital anomalies of the aortic arch. AJR Am J Roentgenol 149:9–13

    PubMed  Google Scholar 

  • Kersting-Sommerhoff BA, Sechtem UP, Schiller NB, Lipton MJ, Higgins CB (1987b) MR imaging of the thoracic aorta in Marfan patients. J Comput Assist Tomogr 11:633–639

    PubMed  Google Scholar 

  • Knauth AL, Marshall AC, Geva T, Jonas RA, Marx GR (2004) Respiratory symptoms secondary to aortopulmonary collateral vessels in tetralogy of Fallot absent pulmonary valve syndrome. Am J Cardiol 93:503–505

    Article  PubMed  Google Scholar 

  • Korosec FR, Grist TM, Mistretta CA (1996) Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Med 36:345–351

    PubMed  Google Scholar 

  • Krinsky GA, Rofsky NM, DeCorato DR et al (1997) Thoracic aorta: comparison of gadolinium-enhanced three-dimensional MR angiography with conventional MR imaging. Radiology 202:183–193

    PubMed  Google Scholar 

  • Lardo AC (2000) Real-time magnetic resonance imaging: diagnostic and interventional applications. Pediatr Cardiol 21:80–98

    Article  PubMed  Google Scholar 

  • Lebowitz JA, Rofsky NM, Krinsky GA, Weinreb JC (1997) Gadolinium-enhanced body MR venography with subtraction technique. AJR Am J Roentgenol 169:755–758

    PubMed  Google Scholar 

  • Lee VS, Resnick D, Bundy JM et al (2002) Cardiac function: MR evaluation in one breath hold with real-time true fast imaging with steady state precession. Radiology 222:835–842

    PubMed  Google Scholar 

  • Leung DA, Debatin JF (1997) Three-dimensional contrast-enhanced magnetic resonance angiography of the thoracic vasculature. Eur Radiol 7:981–989

    Article  PubMed  Google Scholar 

  • Marchal G, Bogaert J (1998) Non-invasive imaging of the great vessels of the chest. Eur Radiol 8:1099–1105

    Article  PubMed  Google Scholar 

  • Markl M, Alley MT, Pelc NJ (2003a) Balanced phase-contrast steady-state free precession (PC-SSFP): a novel technique for velocity encoding by gradient inversion. Magn Reson Med 49:945–952

    Article  PubMed  Google Scholar 

  • Markl M, Chan FP, Alley MT et al (2003b) Time-resolved three-dimensional phase-contrast MRI. J Magn Reson Imaging 17:499–506

    Article  PubMed  Google Scholar 

  • Masui T, Seelos KC, Kersting-Sommerhoff BA, Higgins CB (1991) Abnormalities of the pulmonary veins: evaluation with MR imaging and comparison with cardiac angiography and echocardiography. Radiology 181:645–649

    PubMed  Google Scholar 

  • Masui T, Katayama M, Kobayashi S et al (2000) Gadolinium-enhanced MR angiography in the evaluation of congenital cardiovascular disease pre-and postoperative states in infants and children. J Magn Reson Imaging 12:1034–1042

    Article  PubMed  Google Scholar 

  • McElhinney DB, Reddy VM, Moore P, Hanley FL (1996) Revision of previous Fontan connections to extracardiac or intraatrial conduit cavopulmonary anastomosis. Ann Thorac Surg 62:1276–1283

    Article  PubMed  Google Scholar 

  • Mohiaddin RH, Schoser K, Amanuma M, Burman ED, Longmore DB (1990) MR imaging of age-related dimensional changes of thoracic aorta. J Comput Assist Tomogr 14:748–752

    PubMed  Google Scholar 

  • Mohiaddin RH, Kilner PJ, Rees S et al (1993) Magnetic resonance volume flow and jet velocity mapping in aortic coarctation. J Am Coll Cardiol 22:1515–1521

    PubMed  Google Scholar 

  • Mohiaddin RH, McCrohon J, Francis JM et al (2001) Contrast-enhanced magnetic resonance angiogram of penetrating aortic ulcer. Circulation 103:18–19

    PubMed  Google Scholar 

  • Nayler GL, Firmin DN, Longmore DB (1986) Blood flow imaging by cine magnetic resonance. J Comput Assist Tomogr 10:715–722

    PubMed  Google Scholar 

  • Nienaber CA, Con Kodolitsch Y, Nicolas V et al (1993) The diagnosis of aortic dissection by noninvasive imaging procedures. N Engl J Med 328:1–9

    Article  PubMed  Google Scholar 

  • Nienaber CA, Richartz BM, Rehders T, Ince H, Petzsch M (2004) Aortic intramural haematoma: natural history and predictive factors for complications. Heart 90:372–374

    Article  PubMed  Google Scholar 

  • Nollen GJ, Schijndel KE van, Timmermans J et al (2003) Magnetic resonance imaging of the main pulmonary artery: reliable assessment of dimensions in Marfan patients on a simple axial spin echo image. Int J Cardiovasc Imaging 19:141–147

    Article  PubMed  Google Scholar 

  • O’Donnell CP, Lock JE, Powell AJ, Perry SB (2003) Compression of pulmonary veins between the left atrium and the descending aorta. Am J Cardiol 91:248–251

    Article  PubMed  Google Scholar 

  • Oppelt A, Graumann R, Barfuss H (1986) FISP — a new fast MRI sequence. Electromedica 54:15–18

    Google Scholar 

  • Pereles FS, Kapoor V, Carr JC et al (2001) Usefulness of segmented trueFISP cardiac pulse sequence in evaluation of congenital and acquired adult cardiac abnormalities. AJR Am J Roentgenol 177:1155–1160

    PubMed  Google Scholar 

  • Pettigrew RI, Oshinski JN, Chatzimavroudis G, Dixon WT (1999) MRI techniques for cardiovascular imaging. J Magn Reson Imaging 10:590–601

    Article  PubMed  Google Scholar 

  • Pilleul F, Merchant N (2000) MRI of the pulmonary veins: comparison between 3D MR angiography and T1-weighted spin echo. J Comput Assist Tomogr 24:683–687

    Article  PubMed  Google Scholar 

  • Pitt MP, Bonser RS (1997) The natural history of thoracic aortic aneurysm disease: an overview. J Card Surg [Suppl 2] 12:270–278

    Google Scholar 

  • Powell AJ, Chung T, Landzberg MJ, Geva T (2000) Accuracy of MRI evaluation of pulmonary blood supply in patients with complex pulmonary stenosis or atresia. Int J Card Imaging 16:169–174

    Article  PubMed  Google Scholar 

  • Prasad SK, Soukias N, Hornung T et al (2004) Role of magnetic resonance angiography in the diagnosis of major aortopulmonary collateral arteries and partial anomalous pulmonary venous drainage. Circulation 109:207–214

    Article  PubMed  Google Scholar 

  • Prince MR (1994) Gadolinium-enhanced MR aortography. Radiology 191:155–164

    PubMed  Google Scholar 

  • Prince MR, Yucel EK, Kaufman JA, Harrison DC, Geller SC (1993) Dynamic gadolinium-enhanced three-dimensional abdominal MR arteriography. J Magn Reson Imaging 3:877–381

    PubMed  Google Scholar 

  • Prince MR, Narasimham DL, Jacoby WT et al (1996) Three-dimensional gadolinium-enhanced MR angiography of the thoracic aorta. AJR Am J Roentgenol 166:1387–1397

    PubMed  Google Scholar 

  • Razavi R, Baker E (1999) Magnetic resonance imaging comes of age. Cardiol Young 9:529–538

    PubMed  Google Scholar 

  • Razavi RS, Hill DL, Muthurangu V et al (2003) Three-dimensional magnetic resonance imaging of congenital cardiac anomalies. Cardiol Young 13:461–465

    PubMed  Google Scholar 

  • Riederer SJ, Bernstein MA, Breen JF et al (2000) Three-dimensional contrast-enhanced MR angiography with real-time fluoroscopic triggering: design specifications and technical reliability in 330 patient studies. Radiology 215:584–593

    PubMed  Google Scholar 

  • Roche KJ, Krinsky G, Lee VS, Rofsky N, Genieser NB (1999) Interrupted aortic arch: diagnosis with gadolinium-enhanced 3D MRA. J Comput Assist Tomogr 23:197–202

    Article  PubMed  Google Scholar 

  • Roman MJ, Devereux RB, Niles NW et al (1987) Aortic root dilatation as a cause of isolated, severe aortic regurgitation. Prevalence, clinical and echocardiographic patterns, and relation to left ventricular hypertrophy and function. Ann Intern Med 106:800–807

    PubMed  Google Scholar 

  • Roos-Hesselink JW, Scholzel BE, Heijdra RJ et al (2003) Aortic valve and aortic arch pathology after coarctation repair. Heart 89:1074–1077

    Article  PubMed  Google Scholar 

  • Scheffler K, Lehnhardt S (2003) Principles and applications of balanced SSFP techniques. Eur Radiol 13:2409–2418

    Article  PubMed  Google Scholar 

  • Schmidta M, Theissen P, Klempt G et al (2000) Long-term follow-up of 82 patients with chronic disease of the thoracic aorta using spin-echo and cine gradient magnetic resonance imaging. Magn Reson Imaging 18:795–806

    Article  PubMed  Google Scholar 

  • Sevitt S (1977) The mechanisms of traumatic rupture of the thoracic aorta. Br J Surg 64:166–173

    PubMed  Google Scholar 

  • Simonetti OP, Finn JP, White RD et al (1996) “Black-blood” T2-weighted inversion-recovery MR imaging of the heart. Radiology 199:49–57

    PubMed  Google Scholar 

  • Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radio-frequency coil arrays. Magn Reson Med 38:591–603

    PubMed  Google Scholar 

  • Sodickson DK, McKenzie CA, Li W, Wolff S, Manning WJ, Edelman RR (2000) Contrast-enhanced 3D MR angiography with simultaneous acquisition of spatial harmonics: a pilot study. Radiology 217:284–289

    PubMed  Google Scholar 

  • Soler R, Rodriguez E, Requejo I et al (1998) Magnetic resonance imaging of congenital abnormalities of the thoracic aorta. Eur Radiol 8:540–546

    Article  PubMed  Google Scholar 

  • Solomon SL, Brown JJ, Glazer HS, Mirowitz SA, Lee JK (1990) Thoracic aortic dissection: pitfalls and artifacts in MR imaging. Radiology 177:223–228

    PubMed  Google Scholar 

  • Sonnabend SB, Colletti PM, Pentecost MJ (1990) Demonstration of aortic lesions via cine magnetic resonance imaging. Magn Reson Imaging 8:613–618

    Article  PubMed  Google Scholar 

  • Spuentrup E, Buecker A, Stuber M, Gunther RW (2001) MR-venography using high resolution True-FISP. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 173:686–690

    Article  PubMed  Google Scholar 

  • Stehling MK, Holzknecht NG, Laub G et al (1996) Single-shot T1 and T2 weighted magnetic resonance imaging of the heart with black blood: preliminary experience. MAGMA 4:231–240

    Article  PubMed  Google Scholar 

  • Stemerman DH, Krinsky GA, Lee VS, et al (1999) Thoracic aorta: rapid black-blood MR imaging with half-Fourier rapid acquisition with relaxation enhancement with or without electrocardiographic triggering. Radiology 213:185–191

    PubMed  Google Scholar 

  • Summers RM, Sostman HD, Spritzer CE, Fidler JL (1996) Fast spoiled gradient-recalled MR imaging of thoracic aortic dissection: preliminary clinical experience at 1.5 T. Magn Reson Imaging 14:1–9

    Article  PubMed  Google Scholar 

  • Svensson LG, Labib SB, Eisenhauer AC, Butterly JR (1999) Intimal tear without hematoma. An important variant of aortic dissection that can elude current imaging techniques. Circulation 99:1331–1336

    PubMed  Google Scholar 

  • Szolar DH, Sakuma H, Higgins CB (1996) Cardiovascular applications of magnetic resonance flow and velocity measurements. J Magn Reson Imaging 6:78–89

    PubMed  Google Scholar 

  • Toussaint JF (2002) MRI characterization of atherosclerotic arteries: diagnosis of plaque rupture. J Neuroradiol 29:223–230

    PubMed  Google Scholar 

  • Van Beek EJ, Wild JM, Fink C, et al (2003) MRI for the diagnosis of pulmonary embolism. J Magn Reson Imaging 18:627–640

    Article  PubMed  Google Scholar 

  • Van der Wall EE, Rugge FP van, Vliegen HW, et al (1997) Ischemic heart disease: value of MR techniques. Int J Card Imaging 13:179–189

    Article  PubMed  Google Scholar 

  • Van Grimberge F, Dymarkowski S, Budts W, Bogaert J (2000) Role of magnetic resonance in the diagnosis of subclavian steal syndrome. J Magn Reson Imaging 12:339–342

    Article  PubMed  Google Scholar 

  • Van Praagh R, Bernhard WF, Rosenthal A et al (1971) Interrupted aortic arch: surgical treatment. Am J Cardiol 27:200–211

    Article  PubMed  Google Scholar 

  • Videlefsky N, Parks WJ, Oshinski J et al (2001) Magnetic resonance phase-shift velocity mapping in pediatric patients with pulmonary venous obstruction. J Am Coll Cardiol 38:262–267

    Article  PubMed  Google Scholar 

  • Vogt FM, Goyen M, Debatin JF (2003) MR angiography of the chest. Radiol Clin North Am 41:29–41

    Article  PubMed  Google Scholar 

  • Von Kodolitsch Y, Csosz SK, Koschyk DH et al (2003) Intramural hematoma of the aorta: predictors of progression to dissection and rupture. Circulation 107:1158–1163

    Article  PubMed  Google Scholar 

  • Von Schulthess GK, Higashino SM, Higgins SS, et al (1986) Coarctation of the aorta: MR imaging. Radiology 158:469–474

    PubMed  Google Scholar 

  • Wang Y, Rossman PJ, Grimm RC, et al (1996) 3D MR angiography of pulmonary arteries using real-time navigator gating and magnetization preparation. Magn Reson Med 36:579–587

    PubMed  Google Scholar 

  • Weiger M, Pruessmann KP, Boesiger P (2000a) Cardiac real-time imaging using SENSE. SENSitivity Encoding scheme. Magn Reson Med 43:177–184

    Article  PubMed  Google Scholar 

  • Weiger M, Pruessmann KP, Kassner A et al (2000b) Contrast-enhanced 3D MRA using SENSE. J Magn Reson Imaging 12:671–677

    Article  PubMed  Google Scholar 

  • Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–333

    PubMed  Google Scholar 

  • White CS (2000) MR imaging of thoracic veins. Magn Reson Imaging Clin North Am 8:17–32

    Google Scholar 

  • White CS, Baffa JM, Haney PJ, Campbell AB, NessAiver M (1998) Anomalies of pulmonary veins: usefulness of spinecho and gradient-echo MR images. AJR Am J Roentgenol 170:1365–1368

    PubMed  Google Scholar 

  • Wildenhain PM, Bourekas EC (1991) Pulmonary varix: magnetic resonance findings. Cathet Cardiovasc Diagn 24:268–270

    PubMed  Google Scholar 

  • Winkler ML, Higgins CB (1986) MRI of perivalvular infectious pseudoaneurysms. AJR Am J Roentgenol 147:253–256

    PubMed  Google Scholar 

  • Winter PM, Morawski AM, Caruthers SD et al (2003) Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 108:2270–2274

    Article  PubMed  Google Scholar 

  • Wolff KA, Herold CJ, Tempany CM, Parravano JG, Zerhouni EA (1991) Aortic dissection: atypical patterns seen at MR imaging. Radiology 181:489–495

    PubMed  Google Scholar 

  • Yucel EK, Steinberg FL, Egglin TK et al (1990) Penetrating aortic ulcers: diagnosis with MR imaging. Radiology 177:779–781

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hegde, S.R., Razavi, R., Bogaert, J., Taylor, A.M. (2005). Imaging of Great Vessels. In: Bogaert, J., Dymarkowski, S., Taylor, A.M. (eds) Clinical Cardiac MRI. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26997-5_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-26997-5_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40170-4

  • Online ISBN: 978-3-540-26997-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics