Strengths and Weaknesses of Support Vector Machines Within Marketing Data Analysis

  • Katharina Monien
  • Reinhold Decker
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)


Support vector machines are not only promising for solving pattern recognition tasks but have also produced several successful applications in medical diagnostics and object detection to date. So it is just natural to check whether this methodology might also be a helpful tool for classification in marketing and especially in sales force management. To answer this question both strengths and weaknesses of support vector machines in marketing data analysis are investigated exemplarily with special attention to the problem of selecting appropriate kernel functions and determining the belonging parameters. Difficulties arising in this context are illustrated by means of real data from health care.


Support Vector Machine Kernel Parameter Radial Basis Kernel Polynomial Neural Network Support Vector Learn 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BENNETT, K. and CAMPBELL, C. (2000): Support Vector Machines: Hype or Halleluja?, SIGKDD Explorations, 2,2, 1–13.Google Scholar
  2. BOSER, B.E., GUYON, I.M., and VAPNIK, V.N. (1992): A Training Algorithm for Optimal Margin Classifiers. In: D. Haussler (Ed.): Proceedings of the 5 th Annual ACM Workshop on Computational Learning Theory. ACM Press, Pittsburgh, 144–152.Google Scholar
  3. CHEUNG, K.-W., KWOK, J.T., LAW, M.H, and TSUI, K.-C. (2003): Mining Customer Product Ratings for Personalized Marketing. Decision Support Systems — Special Issue on Web Data Mining, 35,2, 231–243.Google Scholar
  4. DECKER, R. and MONIEN, K. (2003): Support-Vektor-Maschinen als Analysein-strument im Marketing am Beispiel der Neukundenklassifikation. Der Markt, 42,1, 3–13.CrossRefGoogle Scholar
  5. SAUNDERS, C, STITSON, M.O., WESTON, J., BOTTOU, L., SCHÖLKOPF, B., and SMOLA, A. (1998): Support Vector Machine-Reference Manual, Royal Holloway Technical Report CSD-TR-98-03, Royal Holloway.Google Scholar
  6. SCHÖLKOPF, B, BURGES, C, and SMOLA, A. (1999): Introduction to Support Vector Learning. In: B. Schölkopf, C. Burges, and A. Smola (Eds.): Advances in Kernel Methods: Support Vector Learning, Cambridge, MIT Press, 1–15.Google Scholar
  7. SCHÖLKOPF, B. and SMOLA, A. (2002): Learning with Kernels, MIT Press, Cambridge.Google Scholar
  8. VAPNIK, V.N. (1998): Statistical Learning Theory, Wiley, New York.MATHGoogle Scholar
  9. VIAENE, S., BAESENS, B., VAN GESTEL, T., SUYKENS, J., VAN DEN POEL, D., DEDENE, D., DE MOOR, B., and VANTHIENEN, J. (2001): Knowledge Discovery in a Direct Marketing Case Using Least Squares Support Vector Machines. International Journal of Intelligent Systems, 16,9, 1023–1036.CrossRefMATHGoogle Scholar
  10. YANG, Q. (2002): Towards Statistical Planning for Marketing Strategies. In: M. Ghallab, J. Hertzberg, and P. Traverso (Eds.): Proceedings of the Artificial Intelligence Planning Conference. Menlo Park, AAAI Press.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 2005

Authors and Affiliations

  • Katharina Monien
    • 1
  • Reinhold Decker
    • 1
  1. 1.Department of Economics and Business AdministrationUniversity of BielefeldBielefeldGermany

Personalised recommendations