Advertisement

On the continuity of expected utility

  • Erik J. Balder
  • Nicholas C. Yannelis
Chapter
Part of the Studies in Economic Theory book series (ECON.THEORY, volume 19)

Summary

We provide necessary and sufficient conditions for weak (semi)continuity of the expected utility. Such conditions are also given for the weak compactness of the domain of the expected utility. Our results have useful applications in cooperative solution concepts in economies and games with differential information, in noncooperative games with differential information and in principal-agent problems.

Keywords

Lower Semicontinuous Weak Topology Weak Compactness Market Game Weak Continuity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aliprantis, C.D., Burkinshaw, O.: Positive operators. NewYork: Academic Press 1985Google Scholar
  2. 2.
    Allen, B.: Market games with asymmetric information: the value. CARESS Working Paper ##91-08, University of Pennsylvania (1991)Google Scholar
  3. 3.
    Allen, B.: Market games with asymmetric information: the private information core. CARESS Working Paper ##92-04, University of Pennsylvania (1992)Google Scholar
  4. 4.
    Ash, R.B.: Real analysis and probability. NewYork: Academic Press 1972Google Scholar
  5. 5.
    Aubin, J.P., Ekeland, L: Applied nonlinear analysis. NewYork: Wiley 1984Google Scholar
  6. 6.
    Balder, E.J.: On seminormality of integral functionals and their integrands. SIAM J. Control Optim. 24, 95–121 (1986)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Balder, E.J.: Necessary and suffcient conditions for L,-strong-weak semicontinuity of integral functionals. Nonlinear Anal. TMA 11, 1399–1404 (1987)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Balder, E.J.: New sequential compactness results for spaces of scalarly integrable functions. J. Math. Anal. Appl. 151, 1–16 (1990)CrossRefMathSciNetMATHADSGoogle Scholar
  9. 9.
    Balder, E.J.: On the existence of optimal contract mechanisms for the incomplete information principal agent model. MimeoGoogle Scholar
  10. 10.
    Castaing, C., Valadier, M.: Convex analysis and measurable multifunctions. In: Lect. Notes Math., vol. 588. Berlin: Springer 1977Google Scholar
  11. 11.
    Diestel, J., Uhl, J.J.: Vector measures. In: Mathematical Surveys No. 15. Providence: American Mathematical Society (1977)Google Scholar
  12. 12.
    Ionescu Tulcea, C., Ionescu Tulcea, A.: Topics in the theory of lifting. In: Ergebnisse der Mathematik und ihre Grenzgebiete, vol. 48. Berlin: Springer 1969Google Scholar
  13. 13.
    Ioffe, A.D.: On lower semicontinuity of integral functionals. SIAM J. Control Optim. 15, 521–538 (1977)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Kahn, C.M.: Existence and characterization of optimal employment contracts an a continuous state space. J. Econ. Theory (forthcoming)Google Scholar
  15. 15.
    Klei, H.A.: A compactness criterion in L 1(E) and Radon-Nikodym theorems for multimeasures. Bull. Sci. Math. 112, 305–324 (1988)MathSciNetMATHGoogle Scholar
  16. 16.
    Krasa, S., Yannelis, N.C.: The value allocation of an economy with differential information. Faculty Working Paper BEBR ##91-0149, University of Illinois (1991)Google Scholar
  17. 17.
    Koutsougeras, L., Yannelis, N.C.: Incentive compatibility and information superiority of the core of an economy with differential information. Econ. Theory 3, 195–216 (1993)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Olech, C.: A characterization of L,-weak lower sernicontinuity of integral functionals. Bull. Acad. Pol. Sci. 25, 135–142 (1977)MathSciNetMATHGoogle Scholar
  19. 19.
    Page, F.H.: The existence of optimal contraets in the principal-agent model. J. Math. Econ. 16, 157–167 (1987)CrossRefMathSciNetMATHGoogle Scholar
  20. 20.
    Page, F.H.: Incentive compatible strategies for general Stackelberg games with incomplete information. Intern. J. Garne Theory 18, 409–421 (1989)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Page, F.H.: Optimal contract mechanisms for principal-agent problems with moral hazard and averse selection. Econ. Theory 1, 323–338 (1991)CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    Page, F.H.: Market games with differential information and infinite commodity spaces: the core. Working Paper, Economics, Finance and Legal Studies, University of Alabama (1992)Google Scholar
  23. 23.
    Scarf, H.: The core of an N person game. Econometrica 35, 50–69 (1967)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Shapley, L.S., Shubik, M.: On market games. J. Econ. Theory 1, 9–25 (1969)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Yannelis, N.C.: The core of an economy with differential information. Econ. Theory 1, 183–198 (1991)CrossRefMathSciNetMATHGoogle Scholar
  26. 26.
    Yannelis, N.C.: Integration of Banach-valued correspondences. In: Khan, M.A., Yannelis, N.C. (eds.) Equilibrium theory in infinite dimensional spaces. Berlin: Springer 1991Google Scholar
  27. 27.
    Yannelis, N.C., Rustichini, A.: Ort the existence of correlated equilibria, In: Khan, M.A., Yannelis, N.C. (eds.) Equilibrium theory in infinite dimensional spaces. Berlin: Springer 1991Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Erik J. Balder
    • 1
  • Nicholas C. Yannelis
    • 2
  1. 1.Mathematical InstituteUniversity of UtrechtUtrechtNetherlands
  2. 2.Department of EconomicsUniversity of IllinoisChampaignUSA

Personalised recommendations