Advertisement

Transporters and Oxidative Stress in AMD

  • David V. Pow
  • Robert K.P. Sullivan
  • Susan M. Williams
  • Elizabeth WoldeMussie

Keywords

Glutamate Transporter Outer Nuclear Layer Inner Plexiform Layer Cone Photoreceptor Macular Pigment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akagi T, Kaneda M, Ishii K, Hashikawa T (2001) Differential subcellular localization of zinc in the rat retina. J Histochem Cytochem 49: 87–96PubMedGoogle Scholar
  2. Aliev G, Seyidova D, Lamb BT, Obrenovich ME, Siedlak SL, Vinters HV, Friedland RP, LaManna JC, Smith MA, Perry G (2003) Mitochondria and vascular lesions as a central target for the development of Alzheimer’s disease and Alzheimer disease-like pathology in transgenic mice. Neurol Res 25: 665–674CrossRefPubMedGoogle Scholar
  3. Armstrong D, Santangelo G, Connole E (1981) The distribution of peroxide regulating enzymes in the canine eye. Curr Eye Res 1: 225–242PubMedGoogle Scholar
  4. Atalla L, Fernandez MA, Rao NA (1987) Immunohistochemical localization of catalase in ocular tissue. Curr Eye Res 6: 1181–1187PubMedGoogle Scholar
  5. Bannai S (1986) Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J Biol Chem 261: 2256–2263PubMedGoogle Scholar
  6. Barnett NL, Osborne NN (1995) Prolonged bilateral carotid artery occlusion induces electrophysiological and immunohistochemical changes to the rat retina without causing histological damage. Exp Eye Res 61: 83–90CrossRefPubMedGoogle Scholar
  7. Bastianetto S (2002) Red wine consumption and brain aging. Nutrition 18: 432–433CrossRefPubMedGoogle Scholar
  8. Bringmann A, Reichenbach A (2001) Role of Muller cells in retinal degenerations. Front Biosci 6: E72–92PubMedGoogle Scholar
  9. Birinyi A, Parker D, Antal M, Shupliakov O (2001) Zinc co-localizes with GABA and glycine in synapses in the lamprey spinal cord. J Comp Neurol 433: 208–221CrossRefPubMedGoogle Scholar
  10. Buettner GR (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch Biochem Biophys 300: 535–543CrossRefPubMedGoogle Scholar
  11. Buettner GR, Jurkiewicz BA (1996) Catalytic metals, ascorbate and free radicals: combinations to avoid. Radiat Res 145: 532–541PubMedGoogle Scholar
  12. Burke A, Fitzgerald GA (2003) Oxidative stress and smoking-induced vascular injury. Prog Cardiovasc Dis 46: 79–90PubMedCrossRefGoogle Scholar
  13. Bush AI, Goldstein LE (2001) Specific metal-catalysed protein oxidation reactions in chronic degenerative disorders of aging: focus on Alzheimer’s disease and age-related cataracts. Novartis Found Symp 235: 26–38; 38–43PubMedGoogle Scholar
  14. Cai J, Nelson KC, Wu M, Sternberg P Jr, Jones DP (2000) Oxidative damage and protection of the RPE. Prog Retin Eye Res 19: 205–221CrossRefPubMedGoogle Scholar
  15. Chen CJ, Liao SL (2003) Zinc toxicity on neonatal cortical neurons: involvement of glutathione chelation. J Neurochem 85: 443–453CrossRefPubMedGoogle Scholar
  16. Chen Y, Maret W (2001) Catalytic oxidation of zinc/sulfur coordination sites in proteins by selenium compounds. Antioxid Redox Signal 3: 651–656CrossRefPubMedGoogle Scholar
  17. Cho E, Stampfer MJ, Seddon JM, Hung S, Spiegelman D, Rimm EB, Willett WC, Hankinson SE (2001) Prospective study of zinc intake and the risk of age-related macular degeneration. Ann Epidemiol 11: 328–336CrossRefPubMedGoogle Scholar
  18. Cohen SM, Olin KL, Feuer WJ, Hjelmeland L, Keen CL, Morse LS (1994) Low glutathione reductase and peroxidase activity in age-related macular degeneration. Br J Ophthalmol 78: 791–794PubMedGoogle Scholar
  19. Crabb JW, Miyagi M, Gu X, Shadrach K, West KA, Sakaguchi H, Kamei M, Hasan A, Yan L, Rayborn ME, Salomon RG, Hollyfield JG (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci USA 99: 14 682–14 687CrossRefGoogle Scholar
  20. Curcio CA, Millican CL, Allen KA, Kalina RE (1993) Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina. Invest Ophthalmol Vis Sci 34: 3278–3296PubMedGoogle Scholar
  21. Curcio CA, Medeiros NE, Millican CL (1996) Photoreceptor loss in age-related macular degeneration. Invest Ophthalmol Vis Sci. 37: 1236–1249PubMedGoogle Scholar
  22. Delcourt C, Cristol JP, Leger CL, Descomps B, Papoz L (1999a) Associations of antioxidant enzymes with cataract and age-related macular degeneration. The POLA Study. Pathologies Oculaires Liees a l’Age. Ophthalmology 106: 215–222Google Scholar
  23. Delcourt C, Cristol JP, Tessier F, Leger CL, Descomps B, Papoz L (1999b) Age-related macular degeneration and antioxidant status in the POLA study. POLA Study Group. Pathologies Oculaires Liees a l’Age. Arch Ophthalmol 117: 1384–1390Google Scholar
  24. Derouiche A, Rauen T (1995) Coincidence of L-glutamate/L-aspartate transporter (GLAST) and glutamine synthetase (GS) immunoreactions in retinal glia: evidence for coupling of GLAST and GS in transmitter clearance. J Neurosci Res 42: 131–143CrossRefPubMedGoogle Scholar
  25. Dunaief JL, Dentchev T, Ying GS, Milam AH (2002) The role of apoptosis in age-related macular degeneration. Arch Ophthalmol 120: 1435–1442PubMedGoogle Scholar
  26. Ebers GM, Stern L (1875) Papyrus Ebers. Facsimile with a partial translation. 2 volGoogle Scholar
  27. Erikson K, Aschner M (2002) Manganese causes differential regulation of glutamate transporter (GLAST). Taurine transporter and metallothionein in cultured rat astrocytes. Neurotoxicology 23: 595–602PubMedGoogle Scholar
  28. Evans JR (2002) Antioxidant vitamin and mineral supplements for age-related macular degeneration. Cochrane Database of Systematic Reviews (2): CD000254Google Scholar
  29. Gelder NM van (1983) A central mechanism of action for taurine: osmoregulation, bivalent cations, and excitation threshold. Neurochem Res 8: 687–699CrossRefPubMedGoogle Scholar
  30. Giardino I, Fard AK, Hatchell DL, Brownlee M (1998) Aminoguanidine inhibits reactive oxygen species formation, lipid peroxidation, and oxidant-induced apoptosis. Diabetes 47: 1114–1120PubMedGoogle Scholar
  31. Goldman SS (1990) Evidence that the gluconeogenic pathway is confined to an enriched Müller cell fraction derived from the amphibian retina. Exp Eye Res 50: 213–218CrossRefPubMedGoogle Scholar
  32. Gordon WC, Casey DM, Lukiw WJ, Bazan NG (2002) DNA damage and repair in light-induced photoreceptor degeneration. Invest Ophthalmol Vis Sci 43: 3511–3521PubMedGoogle Scholar
  33. Goti D, Hammer A, Galla HJ, Malle E, Sattler W (2000). Uptake of lipoprotein-associated alpha-tocopherol by primary porcine brain capillary endothelial cells. J Neurochem 74: 1374–1383CrossRefPubMedGoogle Scholar
  34. Gottschall-Pass KT, Grahn BH, Gorecki DK, Paterson PG (1997) Oscillatory potentials and light microscopic changes demonstrate an interaction between zinc and taurine in the developing rat retina. J Nutr 127: 1206–1213PubMedGoogle Scholar
  35. Grahn BH, Paterson PG, Gottschall-Pass KT, Zhang Z (2001) Zinc and the eye. J Am Coll Nutr 20: 106–118PubMedGoogle Scholar
  36. Han MH, Yang XL (1999) Zn2+ differentially modulates kinetics of GABA(C) versus GABA(A) receptors in carp retinal bipolar cells. Neuroreport 10: 2593–2597PubMedGoogle Scholar
  37. Haug FM (1967) Electron microscopical localization of the zinc in hippocampal, mossy fiber synapses by a modified sulfide silver procedure. Histochemie 8: 355–368CrossRefPubMedGoogle Scholar
  38. Hayes KC, Carey RE, Schmidt SY (1975) Retinal degeneration associated with taurine deficiency in the cat. Science 188: 949–951PubMedGoogle Scholar
  39. Hirata A, Kitaoka T, Ishigooka H, Ueno S (1991) Combined cytochemical detection of Müller-cell-specific enzyme activity and permeability tracers. Ophthalmologica 202: 94–99PubMedCrossRefGoogle Scholar
  40. Huang PC, Gaitan AE, Hao Y, Petters RM, Wong F (1993) Cellular interactions implicated in the mechanism of photoreceptor degeneration in transgenic mice expressing a mutant rhodopsin gene. Proc Natl Acad Sci USA 90: 8484–8488PubMedGoogle Scholar
  41. Huster D, Reichenbach A, Reichelt W (2000) The glutathione content of retinal Müller (glial) cells: effect of pathological conditions. Neurochem Int 36: 461–469CrossRefPubMedGoogle Scholar
  42. Hyman L, Neborsky R (2002) Risk factors for age-related macular degeneration: an update. Curr Opin Ophthalmol 13: 171–175CrossRefPubMedGoogle Scholar
  43. Jacobson SG, Meadows NJ, Keeling PW, Mitchell WD, Thompson RP (1986) Rod mediated retinal dysfunction in cats with zinc depletion: comparison with taurine depletion. Clin Sci (Lond) 71: 559–564PubMedGoogle Scholar
  44. John SK, Smith JE, Aguirre GD, Milam AH (2000) Loss of cone molecular markers in rhodopsin-mutant human retinas with retinitis pigmentosa. Mol Vis 6: 204–215PubMedGoogle Scholar
  45. Kato S, Ishita S, Sugawara K, Mawatari K (1993) Cystine/glutamate antiporter expression in retinal Müller glial cells: implications for DL-alpha-aminoadipate toxicity. Neuroscience 57: 473–482CrossRefPubMedGoogle Scholar
  46. Kannan R, Bao Y, Wang Y, Sarthy VP, Kaplowitz N (1999) Protection from oxidant injury by sodium-dependent GSH uptake in retinal Müller cells. Exp Eye Res 68: 609–616CrossRefPubMedGoogle Scholar
  47. Kay AR (2003) Evidence for chelatable zinc in the extracellular space of the hippocampus, but little evidence for synaptic release of Zn. J Neurosci 23: 6847–6855PubMedGoogle Scholar
  48. Kedzierski W, Bok D, Travis GH (1998) Non-cell-autonomous photoreceptor degeneration in rds mutant mice mosaic for expression of a rescue transgene. J Neurosci 18: 4076–4082PubMedGoogle Scholar
  49. Kelly FJ (1998) Use of antioxidants in the prevention and treatment of disease. J Int Fed Clin Chem 10: 21–23PubMedGoogle Scholar
  50. Kim D, Joe CO, Han PL (2003) Extracellular and intracellular glutathione protects astrocytes from Zn2+-induced cell death. Neuroreport 14: 187–190PubMedGoogle Scholar
  51. Kim IB, Kim KY, Joo CK, Lee MY, Oh SJ, Chung JW, Chun MH (1998) Reaction of Müller cells after increased intraocular pressure in the rat retina. Exp Brain Res 121: 419–424CrossRefPubMedGoogle Scholar
  52. Kornzweig AL (1977) Changes in the choriocapillaris associated with senile macular degeneration. Ann Ophthalmol 9: 753–756, 759–762PubMedGoogle Scholar
  53. Kulms D, Schwarz T (2002) Molecular mechanisms involved in UV-induced apoptotic cell death. Skin Pharmacol Appl Skin Physiol 15: 342–347CrossRefPubMedGoogle Scholar
  54. La Vail MM (1976) Survival of some photoreceptor cells in albino rats following long-term exposure to continuous light. Invest Ophthalmol Vis Sci 15: 64–70Google Scholar
  55. Leon A, Levick WR, Sarossy MG (1995) Lesion topography and new histological features in feline taurine deficiency retinopathy. Exp Eye Res 161: 731–741Google Scholar
  56. Liang FQ, Godley BF (2003) Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: a possible mechanism for RPE aging and age-related macular degeneration. Exp Eye Res 76: 397–403CrossRefPubMedGoogle Scholar
  57. Liu RM (2002) Down-regulation of gamma-glutamylcysteine synthetase regulatory subunit gene expression in rat brain tissue during aging. J Neurosci Res 68: 344–351CrossRefPubMedGoogle Scholar
  58. Lynch JW, Jacques P, Pierce KD, Schofield PR (1998) Zinc potentiation of the glycine receptor chloride channel is mediated by allosteric pathways. J Neurochem 71: 2159–2168PubMedGoogle Scholar
  59. Makar TK, Nedergaard M, Preuss A, Gelbard AS, Perumal AS, Cooper AJ (1994) Vitamin E, ascorbate, glutathione, glutathione disulfide, and enzymes of glutathione metabolism in cultures of chick astrocytes and neurons: evidence that astrocytes play an important role in antioxidative processes in the brain. J Neurochem 62: 45–53PubMedGoogle Scholar
  60. Maret W (2003) Cellular zinc and redox states converge in the metallothionein/thionein pair. J Nutr 133: 1460S–1462SPubMedGoogle Scholar
  61. Meister A (1983) Selective modification of glutathione metabolism. Science 220: 472–477PubMedGoogle Scholar
  62. Mittag TW, Bayer AU, La Vail MM (1999) Light-induced retinal damage in mice carrying a mutated SOD I gene. Exp Eye Res 69: 677–683CrossRefPubMedGoogle Scholar
  63. Muller-Moule P, Conklin PL, Niyogi KK (2002) Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo. Plant Physiol 128: 970–977CrossRefPubMedGoogle Scholar
  64. Newsome DA, Swartz M, Leone NC, Elston RC, Miller E (1988) Oral zinc in macular degeneration. Arch Ophthalmol 106: 192–198PubMedGoogle Scholar
  65. Nicolas MG, Fujiki K, Murayama K, Suzuki MT, Shindo N, Hotta Y, Iwata F, Fujimura T, Yoshikawa Y, Cho F, Kanai A (1996) Studies on the mechanism of early onset macular degeneration in cynomolgus monkeys. II. Suppression of metallothionein synthesis in the retina in oxidative stress. Exp Eye Res 62: 399–408PubMedGoogle Scholar
  66. Nishikawa S, Tamai M (2001) Müller cells in the human foveal region. Curr Eye Res 22: 34–41CrossRefPubMedGoogle Scholar
  67. Nowak M, Swietochowska E, Wielkoszynski T, Marek B, Karpe J, Gorski J, Glogowska-Szelag J, Kos-Kudla B, Ostrowska Z (2003) Changes in blood antioxidants and several lipid peroxidation products in women with age-related macular degeneration. Eur J Ophthalmol 13: 281–286PubMedGoogle Scholar
  68. Ogawa T, Ohira A, Amemiya T, Kubo N, Sato H (2001) Superoxide dismutase in senescence-accelerated mouse retina. Histochem J 33: 43–50CrossRefPubMedGoogle Scholar
  69. Ohia SE, Bagchi M, Stohs SJ (1994) Age-related oxidative damage in Long-Evans rat retina. Res Commun Mol Pathol Pharmacol 85: 21–31PubMedGoogle Scholar
  70. Ohira A, Tanito M, Kaidzu S, Kondo T (2003) Glutathione peroxidase induced in rat retinas to counteract photic injury. Invest Ophthalmol Vis Sci 44: 1230–1236CrossRefPubMedGoogle Scholar
  71. Pasantes-Morales H, Cruz C (1985) Taurine and hypotaurine inhibit light-induced lipid peroxidation and protect rod outer segment structure. Brain Res 1330: 154–157Google Scholar
  72. Pasantes-Morales H, Dominguez L, Campomanes MA, Pacheco P (1986) Retinal degeneration induced by taurine deficiency in light-deprived cats. Exp Eye Res 43: 55–60PubMedGoogle Scholar
  73. Pecci L, Montefoschi G, Fontana M, Dupre S, Costa M, Cavallini D (2000) Hypotaurine and superoxide dismutase: protection of the enzyme against inactivation by hydrogen peroxide and peroxidation to taurine. Adv Exp Med Biol 483: 163–168PubMedGoogle Scholar
  74. Permyakov SE, Cherskaya AM, Wasserman LA, Khokhlova TI, Senin II, Zargarov AA, Zinchenko DV, Zernii EY, Lipkin VM, Philippov PP, Uversky VN, Permyakov EA (2003) Recoverin is a zinc-binding protein. J Proteome Res 2: 51–57CrossRefPubMedGoogle Scholar
  75. Pfeiffer B, Grosche J, Reichenbach A, Hamprecht B (1994) Immunocytochemical demonstration of glycogen phosphorylase in Müller (glial) cells of the mammalian retina. Glia 12: 62–67CrossRefPubMedGoogle Scholar
  76. Pow DV (2001) Visualising the activity of the cystine-glutamate antiporter in glial cells using antibodies to aminoadipic acid, a selectively transported substrate. Glia 34: 27–38CrossRefPubMedGoogle Scholar
  77. Pow DV, Barnett NL (1999) Changing patterns of spatial buffering of glutamate in developing rat retinae are mediated by the Müller cell glutamate transporter GLAST. Cell Tissue Res 297: 57–66CrossRefPubMedGoogle Scholar
  78. Pow DV, Crook DK (1995) Immunocytochemical evidence for the presence of high levels of reduced glutathione in radial glial cells and horizontal cells in the rabbit retina. Neurosci Lett 193: 25–28CrossRefPubMedGoogle Scholar
  79. Pow DV, Robinson SR (1994) Glutamate in some retinal neurons is derived solely from glia. Neuroscience 60: 355–366CrossRefPubMedGoogle Scholar
  80. Pow DV, Sullivan R, Reye P, Hermanussen S (2002) Localization of taurine transporters, taurine, and (3)H taurine accumulation in the rat retina, pituitary, and brain. Glia 37: 153–168CrossRefPubMedGoogle Scholar
  81. Ramirez JM, Ramirez AI, Salazar JJ, Hoz R de, Trivino A (2001) Changes of astrocytes in retinal aging and age-related macular degeneration. Exp Eye Res 73: 601–615PubMedGoogle Scholar
  82. Reichenbach A, Stolzenburg JU, Eberhardt W, Chao TI, Dettmer D, Hertz L (1993) What do retinal Müller (glial) cells do for their neuronal ’small siblings’? J Chem Neuroanat 6: 201–213CrossRefPubMedGoogle Scholar
  83. Reid GM, Tervit H (1999) Sudden infant death syndrome: oxidative stress. Med Hypotheses 52: 577–580PubMedGoogle Scholar
  84. Rothstein JD, Bristol LA, Hosler B, Brown RH Jr, Kuncl RW (1994) Chronic inhibition of superoxide dismutase produces apoptotic death of spinal neurons. Proc Natl Acad Sci USA 91: 4155–4159PubMedGoogle Scholar
  85. Samiec PS, Drews-Botsch C, Flagg EW, Kurtz JC, Sternberg P Jr, Reed RL, Jones DP (1998) Glutathione in human plasma: decline in association with aging, age-related macular degeneration, and diabetes. Free Radic Biol Med 24: 699–704CrossRefPubMedGoogle Scholar
  86. Sandbach JM, Coscun PE, Grossniklaus HE, Kokoszka JE, Newman NJ, Wallace DC (2001) Ocular pathology in mitochondrial superoxide dismutase (SOD2)-deficient mice. Invest Ophthalmol Vis Sci 42: 2173–2178PubMedGoogle Scholar
  87. Sato H, Tamba M, Ishii T, Bannai S (1999) Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem 274: 11 455–11 458Google Scholar
  88. Schalch W (1992) Carotenoids in the retina — a review of their possible role in preventing or limiting damage caused by light and oxygen. EXS 62: 280–298PubMedGoogle Scholar
  89. Schmidt SY, Berson EL, Hayes KC (1976) Retinal degeneration in cats fed casein. I. Taurine deficiency. Invest Ophthalmol 15: 47–52PubMedGoogle Scholar
  90. Schutte M, Werner P (1998) Redistribution of glutathione in the ischemic rat retina. Neurosci Lett 246: 53–56PubMedGoogle Scholar
  91. Schweitzer D, Thamm E, Hammer M, Kraft J (2001) A new method for the measurement of oxygen saturation at the human ocular fundus. Int Ophthalmol 23: 347–353PubMedGoogle Scholar
  92. Simpkins N, Jankovic J (2003) Neuroprotection in Parkinson disease. Arch Intern Med 163: 1650–1654CrossRefPubMedGoogle Scholar
  93. Soltaninassab SR, Sekhar KR, Meredith MJ, Freeman ML (2000) Multi-faceted regulation of gamma-glutamylcysteine synthetase. J Cell Physiol 182: 163–170CrossRefPubMedGoogle Scholar
  94. Soong NW, Dang MH, Hinton DR, Arnheim N (1996) Mitochondrial DNA deletions are rare in the free radical-rich retinal environment. Neurobiol Aging 17: 827–831CrossRefPubMedGoogle Scholar
  95. Specht S, Leffak M, Darrow RM, Organisciak DT (1999) Damage to rat retinal DNA induced in vivo by visible light. Photochem Photobiol 69: 91–98CrossRefPubMedGoogle Scholar
  96. Spiridon M, Kamm D, Billups B, Mobbs P, Attwell D (1998) Modulation by zinc of the glutamate transporters in glial cells and cones isolated from the tiger salamander retina. J Physiol 506: 363–376CrossRefPubMedGoogle Scholar
  97. Stone J, Maslim J, Valter-Kocsi K, Mervin K, Bowers F, Chu Y, Barnett N, Provis J, Lewis G, Fisher SK, Bisti S, Gargini C, Cervetto L, Merin S, Peer J (1999) Mechanisms of photoreceptor death and survival in mammalian retina. Prog Retin Eye Res 18: 689–735CrossRefPubMedGoogle Scholar
  98. Sturman JA, Wen GY, Wisniewski HM, Hayes KC (1981) Histochemical localization of zinc in the feline tapetum. Effect of taurine depletion. Histochemistry 72: 341–350CrossRefPubMedGoogle Scholar
  99. Sullivan R, Penfold P, Pow DV ( 2003) Neuronal migration and glial remodeling in degenerating retinas of aged rats and in nonneovascular AMD. Invest Ophthalmol Vis Sci 44: 856–865CrossRefPubMedGoogle Scholar
  100. Takano T, Sada K, Yamamura H (2002) Role of protein-tyrosine kinase syk in oxidative stress signaling in B cells. Antioxid Redox Signal 4: 533–541CrossRefPubMedGoogle Scholar
  101. Tsai MJ, Chang YF, Schwarcz R, Brookes N (1996) Characterization of L-alpha-aminoadipic acid transport in cultured rat astrocytes. Brain Res 741: 166–173CrossRefPubMedGoogle Scholar
  102. Tso MO, Zhang C, Abler AS, Chang CJ, Wong F, Chang GQ, Lam TT (1994) Apoptosis leads to photoreceptor degeneration in inherited retinal dystrophy of RCS rats. Invest Ophthalmol Vis Sci 35: 2693–2699PubMedGoogle Scholar
  103. White AA, Crawford KM, Patt CS, Lad PJ (1976) Activation of soluble guanylate cyclase from rat lung by incubation or by hydrogen peroxide. J Biol Chem 251: 7304–7312PubMedGoogle Scholar
  104. Winkler BS, Boulton ME, Gottsch JD, Sternberg P (1999) Oxidative damage and age-related macular degeneration. Mol Vis 5: 32PubMedGoogle Scholar
  105. Wong F (1990) Visual pigments, blue cone monochromasy, and retinitis pigmentosa. Arch Ophthalmol 108: 935–936PubMedGoogle Scholar
  106. Wu KH, Madigan MC, Billson FA, Penfold PL (2003) Differential expression of GFAP in early v late AMD: a quantitative analysis. Br J Ophthalmol 87: 1159–1166CrossRefPubMedGoogle Scholar
  107. Wu L, Cao XY, Chen Y, Wu DZ (1994) Metabolic disturbance in age-related macular degeneration. Metab Pediatr Syst Ophthalmol 17: 38–40PubMedGoogle Scholar
  108. Yant LJ, Ran Q, Rao L, Van Remmen H, Shibatani T, Belter JG, Motta L, Richardson A, Prolla TA (2003) The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic Biol Med 34: 496–502CrossRefPubMedGoogle Scholar
  109. Yokota T, Uchihara T, Kumagai J, Shiojiri T, Pang JJ, Arita M, Arai H, Hayashi M, Kiyosawa M, Okeda R, Mizusawa H (2000) Postmortem study of ataxia with retinitis pigmentosa by mutation of the alpha-tocopherol transfer protein gene. J Neurol Neurosurg Psychiatr 68: 521–525PubMedGoogle Scholar
  110. Yokota T, Igarashi K, Uchihara T, Jishage K, Tomita H, Inaba A, Li Y, Arita M, Suzuki H, Mizusawa H, Arai H (2001) Delayed-onset ataxia in mice lacking alpha-tocopherol transfer protein: model for neuronal degeneration caused by chronic oxidative stress. Proc Natl Acad Sci USA 98: 15185–15190CrossRefPubMedGoogle Scholar
  111. Young RW (1988) Solar radiation and age-related macular degeneration. Surv Ophthalmol 32: 252–269PubMedGoogle Scholar
  112. Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33: 337–349CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • David V. Pow
  • Robert K.P. Sullivan
  • Susan M. Williams
  • Elizabeth WoldeMussie

There are no affiliations available

Personalised recommendations