Experimental Models of Macular Degeneration

  • Ray F. Gariano


Macular Degeneration Subretinal Space Outer Retina Pigment Epithelium Derive Factor Choroidal Neovascular Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambati J, Anand A, Sakurai E, Fernandez S, Lynn, BC, Kuziel WA, Rollins BJ, Ambati BK. (2003) An animal model of age-related macular degeneration in senescent Ccl-2 or Ccr-2 deficient mice. Nat Med 9: 1390–1397CrossRefPubMedGoogle Scholar
  2. Aymerich MS, Alberdi EM, Martinez A, Becerra SP (2001) Evidence for pigment epithelium-derived factor receptors in the neural retina. Invest Ophthalmol Vis Sci 42: 3287–3293PubMedGoogle Scholar
  3. Baffi J, Byrnes G, Chan CC, Csaky KG (2000) Choroidal neovascularization in the rat induced by adenovirus mediated expression of vascular endothelial growth factor. Invest Ophthalmol Vis Sci 41: 3582–3589PubMedGoogle Scholar
  4. Bora PS, Hu Z, Tezel TH, Sohn JH, Kang SG, Cruz JM, Bora NS, Garen A, Kaplan HJ (2003) Immunotherapy for choroidal neovascularization in a laser-induced mouse model simulating exudative (wet) macular degeneration. Pro Natl Acad Sci USA 100: 2679–2684Google Scholar
  5. Bouck N (2002) PEDF: anti-angiogenic guardian of ocular function. Trends Mol Med 8: 330–334CrossRefPubMedGoogle Scholar
  6. Braun RD, Linsenmeier RA, Goldstick TK (1995) Oxygen consumption in the inner and outer retina of the cat. Invest Ophthalmol Vis Sci 36: 542–554PubMedGoogle Scholar
  7. Ciulla TA, Criswell MH, Danis RP, Hill TE (2001) Intravitreal triamcinolone acetonide inhibits choroidal neovascularization in a laser-treated rat model. Arch Ophthalmol 119: 399–404PubMedGoogle Scholar
  8. Ciulla TA, Criswell MH, Danis RP, Fronheiser M, Yuan P, Cox TA, Csaky KG, Robinson MR (2003) Choroidal neovascular membrane inhibition in a laser treated rat model with intraocular sustained release triamcinolone acetonide microimplants. Br J Ophthalmol 87: 1032–1037CrossRefPubMedGoogle Scholar
  9. Connolly SE, Hores TA, Smith LE, D’Amore PA (1988) Characterization of vascular development in the mouse retina. Microvasc Res 36: 275–290CrossRefPubMedGoogle Scholar
  10. Csaky K (2003) Anti-vascular endothelial growth factor therapy for neovascular age-related macular degeneration: promises and pitfalls. Ophthalmology 110: 879–881CrossRefPubMedGoogle Scholar
  11. Cui JZ, Kimura H, Spee C, Thumann G, Hinton DR, Ryan SJ (2000) Natural history of choroidal neovascularization induced by vascular endothelial growth factor in the primate. Graefes Arch Clin Exp Ophthalmol 238: 326–333CrossRefPubMedGoogle Scholar
  12. Danis RP, Ciulla TA, Pratt LM, Anliker W (2000) Intravitreal triamcinolone acetonide in exudative age-related macular degeneration. Retina 20: 244–250PubMedGoogle Scholar
  13. De La Paz MA, Pericak-Vance MA, Lennon F, Haines JL, Seddon JM (1997) Exclusion of TIMP3 as a candidate locus in age-related macular degeneration. Invest Ophthalmol Vis Sci 38: 1060–1065Google Scholar
  14. Dorrell MI, Aguilar E, Friedlander M (2002) Retinal vascular development is mediated by endothelial filopodia, a preexisting astrocytic template and specific R-cadherin adhesion. Invest Ophthalmol Vis Sci 43: 3500–3510PubMedGoogle Scholar
  15. elDirini AA, Ogden TE, Ryan SJ (1991) Subretinal endo-photocoagulation. A new model of subretinal neovascularization in the rabbit. Retina 11: 244–249PubMedGoogle Scholar
  16. Engel HM, Dawson WW, Ulshafer RJ, Hines MW, Kessler MJ (1988) Degenerative changes in maculas of rhesus monkeys. Ophthalmologica 196: 143–150PubMedCrossRefGoogle Scholar
  17. Engerman RL (1976) Development of the macular circulation. Invest Ophthalmol 15: 835–840PubMedGoogle Scholar
  18. Espinosa-Heidmann DG, Suner IJ, Hernandez EP, Monroy D, Csaky KG, Cousins SW (2003) Macrophage depletion diminishes lesion size and severity in experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 44: 3586–3592PubMedGoogle Scholar
  19. Frank RN, Das A, Weber ML (1989) A model of subretinal neovascularization in the pigmented rat. Curr Eye Res 8: 239–247PubMedGoogle Scholar
  20. Frank RN, Amin RH, Eliott D, Puklin JE, Abrams GW (1996) Basic fibroblast growth factor and vascular endothelial growth factor are present in epiretinal and choroidal neovascular membranes. Am J Ophthalmol 122: 393–403PubMedGoogle Scholar
  21. Gariano RF, Iruela-Arispe ML, Hendrickson AE (1994) Vascular development in primate retina: comparison of laminar plexus formation in monkey and human. Invest Ophthalmol Vis Sci 35: 3442–3455PubMedGoogle Scholar
  22. Gariano RF, Sage EH, Kaplan HJ, Hendrickson AE (1996) Development of astrocytes and their relation to blood vessels in fetal monkey retina. Invest Ophthalmol Vis Sci 37: 2367–2375PubMedGoogle Scholar
  23. Gillies MC, Simpson JM, Luo W, Penfold P, Hunyor AB, Chua W, Mitchell P, Billson F (2003) A randomized clinical trial of a single dose of intravitreal triamcinolone acetonide for neovascular age-related macular degeneration: one-year results. Arch Ophthalmol 121: 667–673CrossRefPubMedGoogle Scholar
  24. Hawes NL, Smith RS, Chang B, Davisson M, Heckenlively JR, John SW (1999) Mouse fundus photography and angiography: a catalogue of normal and mutant phenotypes. Mol Vis 5: 22PubMedGoogle Scholar
  25. Heckenlively JR, Hawes NL, Friedlander M, Nusinowitz S, Hurd R, Davisson M, Chang B (2003) Mouse model of subretinal neovascularization with choroidal anastomosis. Retina 23: 518–522PubMedGoogle Scholar
  26. Hendrickson AE, Yuodelis C (1984) The morphological development of the human fovea. Ophthalmology 91: 603–612PubMedGoogle Scholar
  27. Hirata A, Feeney-Burns L (1992) Autoradiographic studies of aged primate macular retinal pigment epithelium. Invest Ophthalmol Vis Sci 33: 2079–2090PubMedGoogle Scholar
  28. Holekamp NM, Bouck N, Volpert O (2002) Pigment epithelium-derived factor is deficient in the vitreous of patients with choroidal neovascularization due to age-related macular degeneration. Am J Ophthalmol 134: 220–227CrossRefPubMedGoogle Scholar
  29. Hsu HT, Goodnight R, Ryan SJ (1989) Subretinal choroidal neovascularization as a response to penetrating retinal injury in the pigmented rabbit. Jpn J Ophthalmol 33: 358–366PubMedGoogle Scholar
  30. Ishibashi T, Miki K, Sorgente N, Patterson R, Ryan SJ (1985) Effects of intravitreal administration of steroids on experimental subretinal neovascularization in the subhuman primate. Arch Ophthalmol 103: 708–711PubMedGoogle Scholar
  31. Jacobson SG, Cideciyan AV, Bennett J, Kingsley RM, Sheffield VC, Stone EM (2002) Novel mutation in the TIMP3 gene causes Sorsby fundus dystrophy. Arch Ophthalmol 120: 376–379PubMedGoogle Scholar
  32. Jester JV, Smith RE (1985) Subretinal neovascularization after experimental ocular histoplasmosis in a subhuman primate. Am J Ophthalmol 100: 252–258PubMedGoogle Scholar
  33. Karakousis PC, John SK, Behling KC, Surace EM, Smith JE, Hendrickson A, Tang WX, Bennett J, Milam AH (2001) Localization of pigment epithelium derived factor (PEDF) in developing and adult human ocular tissues. Mol Vis 7: 154–163PubMedGoogle Scholar
  34. Kimura H, Sakamoto T, Hinton DR, Spee C, Ogura Y, Tabata Y, Ikada Y, Ryan SJ (1995) A new model of subretinal neovascularization in the rabbit. Invest Ophthalmol Vis Sci 36: 2110–2119PubMedGoogle Scholar
  35. Kvanta A, Algvere PV, Berglin L, Seregard S (1996) Subfoveal fibrovascular membranes in age-related macular degeneration express vascular endothelial growth factor. Invest Ophthalmol Vis Sci 37: 1929–1934PubMedGoogle Scholar
  36. Lai CC, Wu WC, Chen SL, Xiao X, Tsai TC, Huan SJ, Chen TL, Tsai RJ, Tsao YP (2001) Suppression of choroidal neovascularization by adeno-associated virus vector expressing angiostatin. Invest Ophthalmol Vis Sci 42: 2401–2407PubMedGoogle Scholar
  37. Lambert V, Wielockx B, Munaut C, Galopin C, Jost M, Itoh T, Werb Z, Baker A, Libert C, Krell HW, Foidart JM, Noel A, Rakic JM (2003) MMP-2 and MMP-9 synergize in promoting choroidal neovascularization. FASEB J DOI 10.1096/fj.03-0113fjeGoogle Scholar
  38. Lewen RM (1988) Subretinal neovascularization complicating laser photocoagulation of diabetic maculopathy. Ophthalmic Surg 19: 734–737PubMedGoogle Scholar
  39. Lopez PF, Sippy BD, Lambert HM, Thach AB, Hinton DR (1996) Transdifferentiated retinal pigment epithelial cells are immunoreactive for vascular endothelial growth factor in surgically excised age-related macular degeneration-related choroidal neovascular membranes. Invest Ophthalmol Vis Sci 37: 855–868PubMedGoogle Scholar
  40. Majji AB, Cao J, Chang KY, Hayashi A, Aggarwal S, Grebe RR, De Juan E Jr. (2000) Age-related retinal pigment epithelium and Bruch’s membrane degeneration in senescence-accelerated mouse. Invest Ophthalmol Vis Sci 41: 3936–3942PubMedGoogle Scholar
  41. Michaelides M, Hunt DM, Moore AT (2003) The genetics of inherited macular dystrophies. J Med Genet 40: 641–650CrossRefPubMedGoogle Scholar
  42. Monaco WA, Wormington CM (1990) The rhesus monkey as an animal model for age-related maculopathy. Optom Vis Sci 67: 532–537PubMedGoogle Scholar
  43. Mori K, Ando A, Gehlbach P, Nesbitt D, Takahashi K, Goldsteen D, Penn M, Chen CT, Mori K, Melia M, Phipps S, Moffat D, Brazzell K, Liau G, Dixon KH, Campochiaro PA (2001) Inhibition of choroidal neovascularization by intravenous injection of adenoviral vectors expressing secretable endostatin. Am J Pathol 59: 313–320Google Scholar
  44. Mori K, Gehlbach P, Ando A, McVey D, Wei L, Campochiaro PA (2002) Regression of ocular neovascularization in response to increased expression of pigment epithelium-derived factor. Invest Ophthalmol Vis Sci 43: 2428–2434PubMedGoogle Scholar
  45. Mori K, Gehlbach P, Yamamoto S, Duh E, Zack DJ, Li Q, Berns KI, Raisler BJ, Hauswirth WW, Campochiaro PA (2003) AAV-mediated gene transfer of pigment epithelium-derived factor inhibits choroidal neovascularization. Invest Ophthalmol Vis Sci 43: 1994–2000Google Scholar
  46. Ogata N, Wada M, Otsuji T, Jo N, Tombran-Tink J, Matsumura M (2002) Expression of pigment epithelium-derived factor in normal adult rat eye and experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 43: 1168–1175PubMedGoogle Scholar
  47. Okamoto N, Tobe T, Hackett SF, Ozaki H, Vinores MA, LaRochelle W, Zack DJ, Campochiaro PA (1997) Transgenic mice with increased expression of vascular endothelial growth factor in the retina: a new model of intraretinal and subretinal neovascularization. Am J Pathol 151: 281–291PubMedGoogle Scholar
  48. Orzalesi N, Migliavacca L, Miglior S (1994) Subretinal neovascularization after naphthalene damage to the rabbit retina. Invest Ophthalmol Vis Sci 35: 696–705PubMedGoogle Scholar
  49. Provis JM, Sandercoe T, Hendrickson AE (2000) Astrocytes and blood vessels define the foveal rim during primate retinal development. Invest Ophthalmol Vis Sci 41: 2827–2836PubMedGoogle Scholar
  50. Qi JH, Ebrahem Q, Moore N, Murphy G, Claesson-Welsh L, Bond M, Baker A, Anand-Apte B (2003) A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med 9: 407–415CrossRefPubMedGoogle Scholar
  51. Renno RZ, Youssri AI, Michaud N, Gragoudas ES, Miller JW (2002) Expression of pigment epithelium-derived factor in experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 3: 1574–1580Google Scholar
  52. Ryan SJ (1982) Subretinal neovascularization. Natural history of an experimental model. Arch Ophthalmol 100: 1804–1809PubMedGoogle Scholar
  53. Ryan SJ, Mittl RN, Maumenee AE (1980) Enzymatic and mechanically induced subretinal neovascularization. Graefes Arch Clin Exp Ophthalmol 215: 21–27Google Scholar
  54. Sakamoto T, Sanui H, Ishibashi T, Kohno T, Takahira K, Inomata H, Kohen L, Ryan SJ (1994) Subretinal neovascularization in the rat induced by IRBP synthetic peptides. Exp Eye Res 58: 155–160CrossRefPubMedGoogle Scholar
  55. Sakamoto T, Soriano D, Nassaralla J, Murphy TL, Oganesian A, Spee C, Hinton DR, Ryan SJ (1995) Effect of intravitreal administration of indomethacin on experimental subretinal neovascularization in the subhuman primate. Arch Ophthalmol 113: 222–226PubMedGoogle Scholar
  56. Sakurai E, Anand A, Ambati BK, Rooijen N van, Ambati J (2003a) Macrophage depletion inhibits experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 44: 3578–3585PubMedGoogle Scholar
  57. Sakurai E, Taguchi H, Anand A, Ambati BK, Gragoudas ES, Miller JW, Adamis AP, Ambati J (2003b) Targeted disruption of the CD18 or ICAM-1 gene inhibits choroidal neovascularization. Invest Ophthalmol Vis Sci 44: 2743–2749PubMedGoogle Scholar
  58. Schwesinger C, Yee C, Rohan RM, Joussen AM, Fernandez A, Meyer TN, Poulaki V, Ma JJ, Redmond TM, Liu S, Adamis AP, D’Amato RJ (2001) Intrachoroidal neovascularization in transgenic mice overexpressing vascular endothelial growth factor in the retinal pigment epithelium. Am J Pathol 158: 1161–1172PubMedGoogle Scholar
  59. Semkova I, Kreppel F, Welsandt G, Luther T, Kozlowski J, Janicki H, Kochanek S, Schraermeyer U (2002) Autologous transplantation of genetically modified iris pigment epithelial cells: a promising concept for the treatment of age-related macular degeneration and other disorders of the eye. Proc Natl Acad Sci USA 99: 13090–13095CrossRefPubMedGoogle Scholar
  60. Smith RS, John SW, Zabeleta A, Davisson MT, Hawes NL, Chang B (2000) The bst locus on mouse chromosome 16 is associated with age-related subretinal neovascularization. Proc Natl Acad Sci USA 97: 2191–2195PubMedGoogle Scholar
  61. Spaide RF, Ho-Spaide WC, Browne RW, Armstrong D (1999) Characterization of peroxidized lipids in Bruch’s membrane. Retina 19: 141–147PubMedGoogle Scholar
  62. Tamai K, Spaide RF, Ellis EA, Iwabuchi S, Ogura Y, Armstrong D (2002) Lipid hydroperoxide stimulates subretinal choroidal neovascularization in the rabbit. Exp Eye Res 74: 301–308CrossRefPubMedGoogle Scholar
  63. Tobe T, Ortega S, Luna JD, Ozaki H, Okamoto N, Derevjanik NL, Vinores SA, Basilico C, Campochiaro PA (1998) Targeted disruption of the FGF2 gene does not prevent choroidal neovascularization in a murine model. Am J Pathol 153: 1641–1646PubMedGoogle Scholar
  64. Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, Nimpf J, Hammer RE, Richardson JA, Herz J (1999) Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97: 689–701CrossRefPubMedGoogle Scholar
  65. Tymms MJ (1999) Sorsby’s fundus dystrophy: what does TIMP3 tell us about general mechanisms underlying macular degeneration? Clin Exp Optometry 82: 124–129CrossRefGoogle Scholar
  66. Ulshafer RJ, Engel HM, Dawson WW, Allen CB, Kessler MJ (1987) Macular degeneration in a community of rhesus monkeys. Ultrastructural observations. Retina 7: 198–203PubMedGoogle Scholar
  67. Wang F, Rendahl KG, Manning WC, Quiroz D, Coyne M, Miller SS (2003) AAV-mediated expression of vascular endothelial growth factor induces choroidal neovascularization in rat. Invest Ophthalmol Vis Sci 44: 781–790PubMedGoogle Scholar
  68. Weber BH, Vogt G, Pruett RC, Stohr H, Felbor U (1994) Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP3) in patients with Sorsby’s fundus dystrophy. Nat Genet 8: 352–356CrossRefPubMedGoogle Scholar
  69. Weber BH, Lin B, White K, Kohler K, Soboleva G, Herterich S, Seeliger MW, Jaissle GB, Grimm C, Reme C, Wenzel A, Asan E, Schrewe H (2002) A mouse model for Sorsby fundus dystrophy. Invest Ophthalmol Vis Sci 43: 2732–2740PubMedGoogle Scholar
  70. Yannuzzi LA, Negrao S, Iida T, Carvalho C, Rodriguez-Coleman H, Slakter J, Freund KB, Sorenson J, Orlock D, Borodoker N (2001) Retinal angiomatous proliferation in age-related macular degeneration. Retina 21: 416–434PubMedGoogle Scholar
  71. Zhu ZR, Goodnight R, Sorgente N, Ogden TE, Ryan SJ (1989) Experimental subretinal neovascularization in the rabbit. Graefes Arch Clin Exp Ophthalmol 227: 257–262CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ray F. Gariano

There are no affiliations available

Personalised recommendations