Advertisement

References

Part of the Springer Praxis Books book series (PRAXIS)

Keywords

Arctic Ocean Geophysical Research Oceanic Physic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R.A. (1995) Calculus: A Complete Course (3rd edn, 1090 pp.). Addison-Wesley, Don Mills, Ontario.Google Scholar
  2. Agnew, T.A., Le, H., and Hirose, T. (1997) Estimation of large scale sea ice motion from SSM/I 85.5 GHz imagery. Annals of Glaciology 25, 305–311.Google Scholar
  3. Ahlfors, L.V. (1966) Complex Analysis (331 pp.). McGraw-Hill, New York.Google Scholar
  4. Albright, M. (1980) Geostrophic wind calculations for AIDJEX. In: R.S. Pritchard (ed.), Sea Ice Processes and Models (pp. 402–409). University of Washington Press, Seattle.Google Scholar
  5. Ames, W.F. (1977) Numerical Methods for Partial Differential Equations (2nd edn, 365 pp.). Academic Press, New York.Google Scholar
  6. Andreas, E.L. (1998) The atmospheric boundary layer over polar marine surfaces. In: M. Leppäranta (ed.), Physics of Ice-Covered Seas (Vol. II, pp. 715–773). Helsinki University Press, Helsinki.Google Scholar
  7. Andreas, E.L. and Claffey, K.J. (1995) Air-ice drag coefficients in the western Weddell Sea: 1. Values deduced from profile measurements. Journal of Geophysical Research 100(C3), 4821–4831.CrossRefGoogle Scholar
  8. Andreas, E.L., Tucker, W.B., III, and Ackley, S.F. (1984) Atmospheric boundary layer modification, drag coefficient, and surface net heat flux in the Antarctic marginal ice zone. Journal of Geophysical Research 89(C1), 649–661.Google Scholar
  9. Appel, I.L. (1989) Variability of thickness of ice and snow in Arctic seas and its parametrization. Meteorologiya i Gidrologiya 3, 80–87.Google Scholar
  10. Arberter, T.E., Curry, J.A., and Maslanik, J.A. (1999) Effects of rheology and ice thickness distribution in a dynamic-thermodynamic sea ice model. Journal of Physical Oceanography 29, 2656–2670.CrossRefGoogle Scholar
  11. Armstrong, T., Roberts, B., and Swithinbank, C. (1966) Illustrated Glossary of Snow and Ice. Scott Polar Research Institute, Cambridge, UK.Google Scholar
  12. Arya, S.P.S. (1975) A drag partition theory for determining the large-scale roughness parameter and wind stress on the Arctic pack ice. Journal of Geophysical Research 80(24), 3447–3454.Google Scholar
  13. Babko, O., Rothrock, D.A., and Maykut, G.A. (2002) Role of rafting in the mechanical distribution of sea ice thickness. Journal of Geophysical Research 107(C8), 27.CrossRefGoogle Scholar
  14. Banke, E.G., Smith, S.D., and Anderson, R.J. (1980) Drag coefficients at AIDJEX from sonic anemometer measurements. In: R.S. Pritchard (ed.), Sea Ice Processes and Models (pp. 430–442). University of Washington Press, Seattle.Google Scholar
  15. Belliveau, D.J., Bugden, G.L., Eid, B.M., and Calnan, C.J. (1990) Sea ice velocity measurements by upward-looking Doppler current profilers. Journal of Atmospheric and Oceanic Technology 7, 596–602.CrossRefGoogle Scholar
  16. Bischof, J. (2000) Ice Drift, Ocean Circulation and Climate Change (215 pp.). Springer-Praxis, Chichester, U.K.Google Scholar
  17. Blondel, Ph. and Murton, B.J. (1997) Handbook of Seafloor Sonar Imagery (314 pp.). Wiley-Praxis, Chichester, UK.Google Scholar
  18. Bourke, R.H. and Garret, R.P. (1987) Sea ice thickness distribution in the Arctic Ocean. Cold Regions Science and Technology 13, 259–280.CrossRefGoogle Scholar
  19. Brennecke, W. (1921). Die ozeanographischen Arbeiten der Deutschen Antarktischen Expedition 1911–1912. Archiv der Deutschen Seewarte, XXXIX (Nr. 1) [in German].Google Scholar
  20. Brown, R.A. (1980) Boundary-layer modeling for AIDJEX. In: R.S. Pritchard (ed.), Sea Ice Processes and Models (pp. 387–401). University of Washington Press, Seattle.Google Scholar
  21. Bukharitsin, P.I. (1986) Calculation and prediction of rafted ice thickness in navigable regions of the northwestern Caspian Sea. Meteorologiya i Gidrologiya 4, 87–93.Google Scholar
  22. Bushuyev, A.V., Volkov, N.A., Gudkovich, Z.M., and Loshchilov, V.S. (1967) Rezul’taty ekspeditsionnykh issledovanii dreifa i dinamiki ledianogo pokrova Arkticheskogo Basseina Vesnoi, 1961g. [Results of expedition investigations of the drift and dynamics of the ice cover of the Arctic Basin during the spring of 1961]. Trudy Arkticheskii i Antarkticheskii Nauchno-issledovatel’skii Institut 257, 26–44 [Engl. summary AIDJEX Bulletin 3, 1–21].Google Scholar
  23. Campbell, W.J. (1965) The wind-driven circulation of ice and water in a polar ocean. Journal of Geophysical Research 70, 3279–3301.Google Scholar
  24. Campbell, W.J. and Rasmussen, L.A. (1972) A numerical model for sea ice dynamics incorporating three alternative ice constitutive laws. In: T. Karlsson (ed.), Sea Ice: Proceedings of an International Conference (pp. 176–187). National Research Council, Reykjavik.Google Scholar
  25. Carsey, F. (ed.) (1992) Microwave Remote Sensing of Sea Ice (Geophysical Monograph No. 68, 462 pp.). American Geophysical Union, Washington, DC.Google Scholar
  26. Cavalieri, D., Gloersen, P., and Zwally, J. (1999-updated regularly) Near real-time DMSP SSM/I daily polar gridded sea ice concentrations. Edited by J. Maslanik and J. Stroeve. NSIDC, Boulder, CO. (http://nsidc.org)Google Scholar
  27. Chamberlain A.C. (1983) Roughness lengths of sea, sand and snow. Boundary Layer Meteorology 25, 405–409.CrossRefGoogle Scholar
  28. Charnock, H. (1955) Wind stress on water surface. Quarterly Journal of Royal Meteorological Society 81, 639.CrossRefGoogle Scholar
  29. Chieh, S.-H., Wake, A., and Rumer, R.R. (1983) Ice forecasting model for Lake Erie. Journal of Waterway, Port, Coastal and Ocean Engineering, 109(4), 392–415.Google Scholar
  30. Colony, R. and Thorndike, A.S. (1984) An estimate of the mean field of Arctic sea ice motion. Journal of Geophysical Research 89(C6), 10623–10629.Google Scholar
  31. Colony, R. and Thorndike, A.S. (1985) Sea ice motion as a drunkard’s walk. Journal of Geophysical Research 90(C1), 965–974.Google Scholar
  32. Coon, M.D. (1974) Mechanical behaviour of compacted Arctic ice floes. Journal of Petroleum Technology 257, 466–479.Google Scholar
  33. Coon, M.D. (1980) A review of AIDJEX modeling. In: R.S. Pritchard (ed.), Proceedings of ICSI/AIDJEX Symposium on Sea Ice Processes and Models (pp. 12–23). University of Washington, Seattle.Google Scholar
  34. Coon, M.D. and Pritchard, R.S. (1979) Mechanical energy considerations in sea-ice dynamics. Journal of Glaciology 24(90), 377–389.Google Scholar
  35. Coon, M.D., Maykut, G.A., Pritchard, R.S., Rothrock, D.A., and Thorndike, A.S. (1974) Modeling the pack ice as an elastic-plastic material. AIDJEX Bulletin 24, 1–105.Google Scholar
  36. Coon, M.D., Knoke, G.S., Echert, D.C., and Pritchard, R.S. (1998) The architecture of an anisotropic elastic-plastic sea ice mechanics constitutive law. Journal of Geophysical Research 103(C10), 21915–21925.CrossRefGoogle Scholar
  37. Crow, E.L. and Shimizu, K. (eds) (1988) Logarithmic Normal Distribution: Theory and Application. Marcel Dekker, New York.Google Scholar
  38. Cushman-Roisin, B. (1994) Introduction to Geophysical Fluid Dynamics. Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  39. Dempsey, J.P. and Shen, H.H. (eds) (2001) IUTAM Symposium on Scaling Laws in Ice Mechanics. Kluwer Academic, Dordrecht, the Netherlands.Google Scholar
  40. Dierking, W. (1995) Laser profiling of the ice surface topography during the Winter Weddell Gyre Study 1992. Journal of Geophysical Research 100(C3), 4807–4820.CrossRefGoogle Scholar
  41. Divine, D.V. (2003) Peculiarities of shore-fast ice formation and destruction in the Kara Sea. PhD thesis, University of Bergen, Norway.Google Scholar
  42. Doronin, Yu.P. (1970) On a method of calculating the compactness and drift of ice floes. Trudy Arkticheskii i Antarkticheskii Nauchno-issledovatel’skii Institut 291, 5–17 [English transl. 1970 in AIDJEX Bulletin 3, 22–39].Google Scholar
  43. Doronin, Yu.P. and Kheysin, D.Ye. (1975) Morskoi led [Sea Ice] (318 pp.). Gidrometeoizdat, Leningrad [English transl. 1977 by Amerind, New Delhi].Google Scholar
  44. Eicken, H. and Lange, M. (1989) Development and properties of sea ice in the coastal regime of the southern Weddell Sea. Journal of Geophysical Research 94(C6), 8193–8206.Google Scholar
  45. Ekman, V.W. (1902) Om jordrotationens inverkan på vindströmmar i hafvet. Nyt Magasin för Naturvidenskap B 40, 1.Google Scholar
  46. Ekman, V.W. (1904) On dead water. In: The Norwegian North Polar Expedition 1893–1896: Scientific Results (edited by F. Nansen, Vol. V, pp. 1–152). Copp, Clark, Mississauga, Ontario.Google Scholar
  47. Erlingsson, B. (1988) Two-dimensional deformation patterns in sea ice. Journal of Glaciology 34(118), 301–308.Google Scholar
  48. Feller, W. (1968) An Introduction to Probability Theory and Its Applications (Vol. 1). John Wiley & Sons, New York.Google Scholar
  49. Fily, M. and Rothrock, D.A. (1987) Sea ice tracking by nested correlations. IEEE Transac-tions on Geoscience and Remote Sensing GE-24(6), 570–580.CrossRefGoogle Scholar
  50. Fissel, D.B. and Tang, C.L. (1991) Response of sea ice drift to wind forcing on the northeastern Newfoundland Shelf. Journal of Geophysical Research 96(C10): 18397–18409.Google Scholar
  51. Flato, G.M. (1993) A particle-in-cell method sea-ice model. Atmosphere-Ocean 31(3), 339–358.Google Scholar
  52. Flato, G.M. and Hibler, W.D., III (1990) On a simple sea-ice dynamics model for climate studies. Annals of Glaciology 14, 72–77.Google Scholar
  53. Flato, G.M. and Hibler, W.D., III (1995) Ridging and strength in modelling the thickness distribution of Arctic sea ice. Journal of Geophysical Research 100(C9), 18611–18626.CrossRefGoogle Scholar
  54. Fukutomi, T. (1952). Study of sea ice (the 18th report): Drift of sea ice due to wind in the Sea of Okhotsk, especially in its southern part. Low Temperature Science 9, 137–144.Google Scholar
  55. Garratt, J.R. (1977) Review of drag coefficients over oceans and continents. Monthly Weather Review, 105, 915–929.CrossRefGoogle Scholar
  56. Gill, A.E. (1982) Atmosphere-Ocean Dynamics (662 pp.). Academic Press, New York.Google Scholar
  57. Glen, J.W. (1958) The flow law of ice. International Association of Scientific Hydrology 47, 171–183.Google Scholar
  58. Glen, J.W. (1970) Thoughts on a viscous model for sea ice. AIDJEX Bulletin 2, 18–27.Google Scholar
  59. Gloersen, P., Zwally, H.J., Chang, A.T.C., Hall, D.K., Campbell, W.J., and Ramseier, R.O. (1978) Time dependence of sea ice concentration and multi-year ice fraction in the Arctic Basin. Boundary Layer Meteorology 13, 339–359.CrossRefGoogle Scholar
  60. Goldstein, R., Osipenko, N. and Leppäranta, M. (2000) Classification of large-scale sea-ice structures based on remote sensing imagery. Geophysica 36(1–2), 95–109.Google Scholar
  61. Goldstein, R., Osipenko, N., and Leppäranta, M. (2001) On the formation of large scale structural features. In: J.P. Dempsey and H.H. Shen (eds), IUTAM Symposium on Scaling Laws in Ice Mechanics and Ice Dynamics (pp. 323–334). Kluwer Academic, Dordrecht, The Netherlands.Google Scholar
  62. Gorbunov, Yu.A. and Timokhov, L.A. (1968) Investigation of ice dynamics. Izvestiya Atmospheric and Oceanic Physics 4(10), 623–626.Google Scholar
  63. Gordienko, P. (1958) Arctic ice drift. Proceedings of Conference on Arctic Sea Ice (Publication No. 598, pp. 210–220). National Academy of Science, National Research Council, Washington, D.C.Google Scholar
  64. Gordon, A.L. and Lukin, V.V. (1992) Ice Station Weddell #1. Antarctic Journal of the United States 27(5), 97–99.Google Scholar
  65. Gothus, Olaus Magnus (1539) Carta Marina. Original published in Venice [available at Geenimap Oy, Vantaa, Finland (http://www.genimap.fi/kuluttajatuotteet/)].Google Scholar
  66. Gradinger, R. (1995) Climate change and the biological oceanography of the Arctic Ocean. Philosophical Transactions of the Royal Society of London A352, 277–286.Google Scholar
  67. Granberg, H.B. and Leppäranta, M. (1999) Observations of sea ice ridging in the Weddell Sea. Journal of Geophysical Research, 104(C11), 25735–25745.CrossRefGoogle Scholar
  68. Gray, J.N.M.T. (1999) Loss of hyperbolicity and ill-posedness of the viscous-plastic sea ice rheology in uniaxial divergent flow. Journal of Physical Oceanography 29, 2920–2929.CrossRefGoogle Scholar
  69. Gray, J.N.M.T. and Killworth, P. (1995) Stability of viscous-plastic sea ice rheology. Journal of Physical Oceanography 25, 971–978.CrossRefGoogle Scholar
  70. Gray, J.N.M.T. and Morland, L.W. (1994) A two-dimensional model for the dynamics of sea ice. Philosophical Transactions of the Royal Society of London A347, 219–290.Google Scholar
  71. Gudkovic, Z.M. and Doronin, Yu.P. (2001) Dreif morskikh l’dov. Gidrometeoizdat, St Petersburg [in Russian].Google Scholar
  72. Gudkovic, Z.M. and Romanov, M.A. (1976) Method for calculation the distribution of ice thickness in the Arctic seas during the winter period. Ice Forecasting Techniques for the Arctic Seas (pp. 1–47). Amerind Publishing, New Delhi [original in Russian by Gidrometeorologicheskoe Publishers, Leningrad, 1970].Google Scholar
  73. Gutfraind, R. and Savage, S.B. (1997) Marginal ice zone rheology: Comparison of results from continuum-plastic models and discrete particle simulations. Journal of Geophysical Research 102(C6), 12647–12661.CrossRefGoogle Scholar
  74. Haapala, J. (2000) On the modelling of ice-thickness distribution. Journal of Glaciology 46(154), 427–437.Google Scholar
  75. Haapala, J. and Leppäranta, M. (1996) Simulations of the Baltic Sea ice season with a coupled ice-ocean model. Tellus 48A, 622–643.Google Scholar
  76. Haapala, J. and Leppäranta, M. (1997a) The Baltic Sea ice season in changing climate. Boreal Environment Research 2, 93–108.Google Scholar
  77. Haapala, J. and Leppäranta, M. (eds) (1997b) ZIP-97 Data Report (Report Series in Geophysics No. 37, 123 pp.). University of Helsinki Department of Geophysics, Helsinki.Google Scholar
  78. Haas, C. (1998) Evaluation of ship based electromagnetic-inductive thickness measurements of summer sea ice in the Bellingshausen and Amundsen seas, Antarctica. Cold Regions Science and Technology 27, 1–6.CrossRefGoogle Scholar
  79. Häkkinen, S. (1986) Ice banding as a response of the coupled ice-ocean system to temporally varying winds. Journal of Geophysical Research 91(C4), 5047–5053.Google Scholar
  80. Harlow, F.H. (1964) The particle-in-cell computing method for fluid dynamics. Methods in Computational Physics 3, 319–343.Google Scholar
  81. Harr, M.E. (1977) Mechanics of Particulate Media. A probabilistic approach (543 pp.). McGraw-Hill, New York.Google Scholar
  82. Heil, P. and Hibler, W.D., III (2002) Modeling the high-frequency component of Arctic sea ice drift and deformation. Journal of Physical Oceanography 32(11), 3039–3057.CrossRefGoogle Scholar
  83. Hibler, W.D., III (1979) A dynamic-thermodynamic sea ice model. Journal of Physical Oceanography 9, 815–846.CrossRefGoogle Scholar
  84. Hibler, W.D., III (1980a) Modelling a variable thickness sea ice cover. Monthly Weather Review 108(12), 1943–1973.CrossRefGoogle Scholar
  85. Hibler, W.D., III (1980b) Sea ice growth, drift and decay. In: S. Colbeck (ed.), Dynamics of Snow and Ice Masses (pp. 141–209). Academic Press, New York.Google Scholar
  86. Hibler, W. D., III (1986) Ice dynamics. In: N. Untersteiner (ed.), Geophysics of Sea Ice (pp. 577–640). Plenum Press, New York.Google Scholar
  87. Hibler, W.D., III (2001) Sea ice fracturing on the large scale. Engineering Fracture Mechanics 68, 2013–2043.CrossRefGoogle Scholar
  88. Hibler, W.D., III and Ackley, S.F. (1983) Numerical simulation of the Weddell Sea pack ice. Journal of Geophysical Research 88(C5), 2873–2887.Google Scholar
  89. Hibler, W.D., III and Bryan, K. (1987) A diagnostic ice-ocean model. Journal of Physical Oceanography 17, 987–1015.CrossRefGoogle Scholar
  90. Hibler, W.D., III and Schulson, E.M. (2000) On modeling the anisotropic failure and flow of flawed sea ice. Journal of Geophysical Research 105(C7), 17105–17120.CrossRefGoogle Scholar
  91. Hibler, W.D., III and Tucker, W.B., III (1977) Seasonal variations in apparent sea ice viscosity on the geophysical scale. Geophysical Research Letters 4(2), 87–90.Google Scholar
  92. Hibler, W.D., III, Weeks, W.F., and Mock, S.J. (1972) Statistical aspects of sea-ice ridge distributions. Journal of Geophysical Research 11, 5954–5970.Google Scholar
  93. Hibler, W.D., III, Weeks, W.F., Ackley, S.F., Kovacs, A., and Campbell, W.J. (1973) Mesoscale strain measurements on the Beaufort Sea pack ice (AIDJEX 1971). Journal of Glaciology 12(65), 187–206.Google Scholar
  94. Hibler, W.D., III, Ackley, S.F., Crowder, W.K., McKim, H.L., and Anderson, D.M. (1974a) Analysis of shear zone ice deformation in the Beaufort Sea using satellite imagery. In: J.C. Reed and J.E. Sater (eds), The Coast and Shelf of the Beaufort Sea (pp. 285–296). The Arctic Institute of North America, Arlington, VA.Google Scholar
  95. Hibler, W.D., III, Mock, S.J., and Tucker, W.B., III (1974b) Classification and variation of sea ice ridging in the Western Arctic basin. Journal of Geophysical Research 79(18), 2735–2743.Google Scholar
  96. Hibler, W.D., III, Weeks, W.F., Kovacs, A., and Ackley, S.F. (1974c) Differential sea-ice drift: I. Spatial and temporal variations in sea ice deformation. Journal of Glaciology 13(69), 437–455.Google Scholar
  97. Hibler, W.D., III, Tucker, W.B., III, and Weeks, W.F. (1975) Measurement of sea ice drift far from shore using Landsat and aerial photograph imagery. Proceedings 3rd International Symposium on Ice Problems (pp. 541–554). IAHR Committee on Ice Problems, Hanover, NH.Google Scholar
  98. Holland, D., Mysak, L.A., and Manak, D.K. (1993) Sensitivity study of a dynamic-thermodynamic sea ice model. Journal of Geophysical Research 98(C2), 2561–2586.Google Scholar
  99. Hopkins, M.A. (1994) On the ridging of intact lead ice. Journal of Geophysical Research 99(C8), 16351–16360.CrossRefGoogle Scholar
  100. Hopkins, M.A. and Hibler, W.D., III (1991) On the ridging of a thin sheet of lead ice. Journal of Geophysical Research 96(C3): 4809–4820.Google Scholar
  101. Hopkins, M.A. and Tuhkuri, J. (1999) Compression of floating ice fields. Journal of Geophysical Research 104(C7), 15815–15825.CrossRefGoogle Scholar
  102. Hunke, E. and Dukewicz, J.K. (1997) An elastic-viscous-plastic model for sea ice dynamics. Journal of Physical Oceanography 27, 1849–1867.CrossRefGoogle Scholar
  103. Hunke, E. and Zhang, Y. (1999) A comparison of sea ice dynamics models at high resolution. Monthly Weather Review 127, 396–408.CrossRefGoogle Scholar
  104. Hunkins, K. (1967) Inertial oscillations of Fletcher’s Ice Island (T-3). Journal of Geophysical Research 72(4), 1165–1173.Google Scholar
  105. Hunkins, K. (1975) The oceanic boundary-layer and stress beneath a drifting ice floe. Journal of Geophysical Research 80(24), 3425–3433.Google Scholar
  106. Hunter, S.C. (1976) Mechanics of Continuous Media. Ellis Horwood, Chichester, UK.Google Scholar
  107. Ikeda, M. (1985) A coupled ice-ocean model of a wind-driven coastal flow. Journal of Geophysical Research 90(C5), 9119–9128.Google Scholar
  108. Joffre, S.M. (1982a) Momentum and heat transfers in the surface layer over a frozen sea. Boundary Layer Meteorology 24, 211–229.CrossRefGoogle Scholar
  109. Joffre, S.M. (1982b) Assessment of the separate effects of baroclinicity and thermal stability in the atmospheric boundary layer over the sea. Tellus, 34(6), 567–578.CrossRefGoogle Scholar
  110. Joffre, S.M. (1983) Determining the form drag contribution to the total stress of the atmospheric flow over ridged sea ice. Journal of Geophysical Research 88(C7), 4524–4530.Google Scholar
  111. Joffre, S.M. (1984) The Atmospheric Boundary Layer over the Bothnian Bay: A Review of Work on Momentum Transfer and Wind Structure (Report No. 40, 58 pp.). Winter Navigation Research Board, Helsinki.Google Scholar
  112. Joffre, S.M. (1985) Effects of local accelerations and baroclinity on the mean structure of the atmospheric boundary layer over the sea. Boundary-Layer Meteorology, 32(3), 237–255.CrossRefGoogle Scholar
  113. Jurva, R. (1937) Über die Eisverhältnisse des Baltischen Meeres an den Küsten Finnlands nebst einem Atlas. Merentutkimuslait. Julk./Havsforskningsinst. Skr. 243, 62 [in German].Google Scholar
  114. Kankaanpää, P. (1998) Distribution, morphology and structure of sea ice pressure ridges in the Baltic Sea. Fennia, 175(2).Google Scholar
  115. Keliher, T.E. and Venkatesh, S. (1987) Modelling of Labrador Sea pack ice, with an application to estimating geostrophic currents. Cold Regions Science and Technology 13, 161–176.CrossRefGoogle Scholar
  116. Ketchum, R.D., Jr. (1971) Airborne laser profiling of the Arctic pack ice. Remote Sensing of Environment 2, 41–52.CrossRefGoogle Scholar
  117. Kheysin, D.Ye. (1978) Relationship between mean stresses and local values of internal forces in a drifting ice cover. Oceanology 18(3), 285–286.Google Scholar
  118. Kheysin, D.Ye. and Ivchenko, V.O. (1973) Numerical model of tidal drift of ice allowing for interaction between ice floes. Izvestiya AN SSSR Ser. Fiz. Atmosfery i Okeana 9(4), 420–429.Google Scholar
  119. Kirillov, A.A. (1957) Calculation of hummockness in determining ice volume. Problems of the Arctic 2, 53–58 [in Russian].Google Scholar
  120. Kolmogorov, A.N. (1941). Über das logaritmisch normale Verteilungsgesetz der Dimensionen der Teilchen bei Zerstückelung. Doklady Academy of Sciences of USSR 31, 99.Google Scholar
  121. Kondratyev, K., Johannessen, O.M., and Melentyev, V.V. (1996) High Latitude Climate and Remote Sensing (200 pp.). Wiley-Praxis, Chichester, UK.Google Scholar
  122. Korvin, G. (1992) Fractal Models in the Earth Sciences (396 pp.). Elsevier, Amsterdam.Google Scholar
  123. Kottmeier, C. and Hartig, R. (1990) Winter observations of the atmosphere over Antarctic sea ice. Journal of Geophysical Research 95, 16551–16560.Google Scholar
  124. Kovacs, A. and Holladay, J.S. (1990) Airborne sea ice thickness sounding. In: S.F. Ackley and W.F. Weeks (eds), Sea Ice Properties and Processes (CRREL Monograph No. 90-1, pp. 225–229). Cold Regions Research and Engineering Laboratory, Hanover, NH.Google Scholar
  125. Kovacs, A. and Mellor, M. (1974) Sea ice morphology and ice as a geological agent in the southern Beaufort Sea. In: J.L. Reed and J.E. Sater (eds), The Coast and Shelf of the Beaufort Sea (pp. 113–161). Arctic Institute of North America, Arlington, VA.Google Scholar
  126. Kowalik, Z. (1981) A study of the M2 tide in the ice-covered Arctic Ocean. Modeling, Identification and Control 2(4), 201–223.CrossRefGoogle Scholar
  127. Kowalik, Z. and Murty, T.S. (1993) Numerical Modeling of Ocean Dynamics (Advanced Series in Ocean Engineering, 481 pp.). World Scientific, Singapore.Google Scholar
  128. Kowalik, Z. and Proshutinsky, A.Yu. (1995) Topographic enhancement of tidal motion in the western Barents Sea. Journal of Geophysical Research 100(C2), 2613–2637.CrossRefGoogle Scholar
  129. Kuznetsov, I.M. and Mironov, E.U. (1986) Studying anomalously high ice drift velocities in Arctic seas. Meteorologiya i Gidrologiya 1, 70–75.Google Scholar
  130. Kwok, R. (1998) The Radarsat geophysical processor system. In: G. Tsatsoulis and R. Kwok (eds), Analysis of SAR Data of the Polar Oceans (pp. 235–257). Springer-Verlag, Berlin.Google Scholar
  131. Kwok, R. (2001) Deformation of the Arctic Ocean sea ice cover between November 1996 and April 1997: A qualitative survey. In: J.P. Dempsey and H.H. Shen (eds), IUTAM Symposium on Scaling Laws in Ice Mechanics and Ice Dynamics (pp. 315–322). Kluwer Academic, Dordrecht, The Netherlands.Google Scholar
  132. Kwok, R., Curlander, J.C., McConnell, R., and Pang, S.S. (1990) An ice-motion tracking system at the Alaska SAR facility. IEEE Journal of Oceanic Engineering 15(1), 44–54.CrossRefGoogle Scholar
  133. Kwok, R., Rignot, E., Holt, B., and Onstott, R. (1992) Identification of sea ice types in spaceborne SAR data. Journal of Geophysical Research 97(C2), 2391–2402.Google Scholar
  134. Kwok, R., Schweiger, A., Rothrock, D.A., Pang, S., and Kottmeier, C. (1998) Sea ice motion from satellite passive microwave imagery assessed with ERS SAR and buoy motion. Journal of Geophysical Research 103(C4), 8191–8214.CrossRefGoogle Scholar
  135. Laikhtman, D.L. (1958) O vetrovom dreife ledjanykh poley. Trudy Leningradskiy Gidrometeorologicheskiy Institut 7, 129–137.Google Scholar
  136. Landau, L.D. and Lifschitz, E.M. (1976) Mechanics (3rd edn, 169 pp.). Pergamon Press, Oxford, UK.Google Scholar
  137. Lange, M. and Pfirman, S. (1998) Arctic sea ice contamination: Major characteristics and consequences. In: M Leppäranta (ed.), Physics of Ice-Covered Seas (Vol. 2, pp. 651–682). Helsinki University Press.Google Scholar
  138. Legen’kov, A.P. (1977) On the strains in the drifting sea ice in the Arctic Basin. Izvestiya, Atmospheric and Oceanic Physics 13(10), 728–733.Google Scholar
  139. Legen’kov, A.P. (1978) Ice movements in the Arctic Basin and external factors. Oceanology 18(2), 156–159.Google Scholar
  140. Legen’kov, A.P., Chuguy, I.V., and Appel, I.L. (1974) On ice shifts in the Arctic basin. Oceanology 14(6), 807–813.Google Scholar
  141. Lehmuskoski, P. and Mäkinen, J. (1978) Gravity measurements on the ice of the Bothnian Bay. Geophysica 15(1).Google Scholar
  142. Lensu, M. (2003) The Evolution of Ridged Ice Fields (Report M-280, 140 pp.). Helsinki University of Technology, Ship Laboratory, Espoo, Finland.Google Scholar
  143. Leppäranta, M. (1981a) An ice drift model for the Baltic Sea. Tellus 33(6), 583–596.Google Scholar
  144. Leppäranta, M. (1981b) On the structure and mechanics of pack ice in the Bothnian Bay. Finnish Marine Research 248, 3–86.Google Scholar
  145. Leppäranta, M. (1982) A case study of pack ice displacement and deformation field based on Landsat images. Geophysica 19(1), 23–31.Google Scholar
  146. Leppäranta, M. (1987) Ice observations: Sea Ice-85 experiment. Meri 15.Google Scholar
  147. Leppäranta, M. (1990) Observations of free ice drift and currents in the Bay of Bothnia. Acta Regiae Societatis Scientiarum et Litterarum Gothoburgensis, Geophysica 3, 84–98.Google Scholar
  148. Leppäranta, M. (1993). A review of analytical modelling of sea ice growth. Atmosphere-Ocean 31(1), 123–138.Google Scholar
  149. Leppäranta, M. (1998) The dynamics of sea ice. In: M. Leppäranta (ed.), Physics of Ice-covered Seas (Vol. 1, pp. 305–342). Helsinki University Press.Google Scholar
  150. Leppäranta, M. and Hakala, R. (1992) The structure and strength of first-year ice ridges in the Baltic Sea. Cold Regions Science and Technology 20, 295–311.CrossRefGoogle Scholar
  151. Leppäranta, M. and Hibler, W.D., III (1984) A mechanism for floe clustering in the marginal ice zone. MIZEX Bulletin 3, 73–76.Google Scholar
  152. Leppäranta, M. and Hibler, W.D., III (1985) The role of plastic ice interaction in marginal ice zone dynamics. Journal of Geophysical Research 90(C6), 11899–11909.Google Scholar
  153. Leppäranta, M. and Hibler, W.D., III (1987) Mesoscale sea ice deformation in the East Greenland marginal ice zone. Journal of Geophysical Research 92(C7), 7060–7070.Google Scholar
  154. Leppäranta, M. and Omstedt, A. (1990) Dynamic coupling of sea ice and water for an ice field with free boundaries. Tellus 42A, 482–495.Google Scholar
  155. Leppäranta, M. and Palosuo, E. (1983) Use of ship’s radar to observe two-dimensional ridging characteristics. Proceedings of 7th International Conference on Port and Ocean Engineering under Arctic Conditions (POAC’83), Helsinki, (Vol. I, pp. 138–147).Google Scholar
  156. Leppäranta, M. and Wang, K. (2002) Sea ice dynamics in the Baltic Sea basins. Proceedings of the 15th IAHR Ice Symposium, Dunedin, New Zealand.Google Scholar
  157. Leppäranta, M. and Zhang, Z. (1992a) Use of ERS-1 SAR data in numerical sea ice modeling. Proceedings of the Central Symposium of the “International Space Year” Conference, Munich, 30 March–4 April 1992 (pp. 123–128, ESA SP-341, July 1992).Google Scholar
  158. Leppäranta, M. and Zhang, Z. (1992b) A viscous-plastic test model for Baltic Sea ice dynamics (Internal Report 1992(3)). Finnish Institute of Marine Research, Helsinki.Google Scholar
  159. Leppäranta, M., Lensu, M., and Lu, Q.-m. (1990) Shear flow of sea ice in the marginal ice zone with collision rheology. Geophysica 25(1–2), 57–74.Google Scholar
  160. Leppäranta, M., Lensu, M., Kosloff, P., and Veitch, B. (1995) The life story of a first-year sea ice ridge. Cold Regions Science and Technology 23, 279–290.CrossRefGoogle Scholar
  161. Leppäranta, M., Sun, Y., and Haapala, J. (1998) Comparisons of sea-ice velocity fields from ERS-1 SAR and a dynamic model. Journal of Glaciology, 44(147), 248–262.Google Scholar
  162. Leppäranta, M., Zhang, Z., Haapala, J., and Stipa, T. (2001) Sea ice mechanics in a coastal zone of the Baltic Sea. Annals of Glaciology 33, 151–156.Google Scholar
  163. LeSchack, L.A., Hibler, W.D., III, and Morse, F.H. (1971) Automatic processing of Arctic pack ice obtained by means of submarine sonar and other remotes sensing techniques. In: J.B. Lomax (ed.), Propagation Limitations in Remote Sensing (AGARD Conf. Proc. 90, pp. 5-1 to 5-19). AGARD, NATO, Neuilly-sur-Seine, France.Google Scholar
  164. Lewis, J.E., Leppäranta, M., and Granberg, H.B. (1993) Statistical properties of sea ice surface topography in the Baltic Sea. Tellus 45A, 127–142.Google Scholar
  165. Li, S., Cheng, W., and Weeks, W.F. (1995) A grid based algorithm for the extraction of intermediate-scale sea ice deformation descriptors from SAR ice motion products. International Journal of Remote Sensing 16(17), 3267–3286.Google Scholar
  166. Li, W.H. and Lam, S.H., 1964. Principles of Fluid Mechanics. Addison-Wesley, Reading, MA.Google Scholar
  167. Lichey, C. and Hellmer, H.H. (2001) Modeling giant-iceberg drift under the influence of sea ice in the Weddell Sea, Antarctica. Journal of Glaciology 47(158), 452–460.Google Scholar
  168. Lisitzin, E. (1957) On the reducing influence of sea ice on the piling-up of water due to wind stress. Commentationes Physico-Mathematicae, Societas Scientiarum Fennica 20(7), 1–12.Google Scholar
  169. Liu, A.K. and Cavalieri, D.J. (1998) On sea ice drift from the wavelet analysis of the Defense Meteorological Satellite Program (DMSP) special sensor microwave imager (SSM/I) data. International Journal of Remote Sensing 19(7), 1415–1423.CrossRefGoogle Scholar
  170. Løset, S. (1993) Some aspects of floating ice related sea surface operations in the Barents Sea. Ph.D. thesis, University of Trondheim, Norway.Google Scholar
  171. Lu, Q.-m., Larsen, J., and Tryde, P. (1989) On the role of ice interaction due to floe collisions in marginal ice zone dynamics. Journal of Geophysical Research 94(C10), 14525–14537.Google Scholar
  172. Lu, Q.-m., Larsen, J., and Tryde, P. (1990) A dynamic and thermodynamic sea ice model for subpolar regions. Journal of Geophysical Research 95(C8), 13433–13457.Google Scholar
  173. Lurton, X. (2002) An Introduction to Underwater Acoustics (347 pp.). Springer-Praxis, Chichester, UK.Google Scholar
  174. Lyon, W.K. (1961) Ocean and sea-ice research in the Arctic Ocean via submarine. Transactions of the New York Academy of Sciences, Series A 23(8), 662–674.Google Scholar
  175. Lytle, V.I. and Ackley, S.F. (1991) Sea ice ridging in the eastern Weddell Sea. Journal of Geophysical Research 96(C10), 18411–18416.Google Scholar
  176. Makshtas, A.P. (1984) The Heat Budget of Arctic Ice in the Winter. Gidrometeoizdat, Leningrad [English language version by International Glaciological Society, Cambidge, UK, 1991].Google Scholar
  177. Martinson, D.G. and Wamser, C. (1990) Ice drift and momentum exchange in winter Antarctic pack ice. Journal of Geophysical Research 95(C2), 1741–1755.Google Scholar
  178. Mase, G.E. (1970) Continuum Mechanics (Schaum’s outline series). McGraw-Hill, New York.Google Scholar
  179. Massom, R., Scambos, T., Lytle, V., Hill, K., Lubin, D., and Giles, B. (2003) Fast ice distribution and its interannual variability in East Antarctica, determined from satellite data analysis. Proceedings of the 16th International Symposium on Ice (Vol. 3, p. 271). IAHR and University of Otago, New Zealand.Google Scholar
  180. Maykut, G.A. and Untersteiner, N. (1971) Some results from a time-dependent, thermo-dynamic model of sea ice. Journal of Geophysical Research, 76, 1550–1575.Google Scholar
  181. McPhee, M.G. (1978) A simulation of the inertial oscillation in drifting pack ice. Dynamics of Atmospheres and Oceans 2, 107–122.CrossRefGoogle Scholar
  182. McPhee, M.G. (1980) An analysis of pack ice drift in summer. In: R.S. Pritchard (ed.), Proceedings of ICSI/AIDJEX Symp. on Sea Ice Processes and Models (pp. 62–75). University of Washington, Seattle.Google Scholar
  183. McPhee, M.G. (1982) Sea Ice Drag Laws and Simple Boundary Layer Concepts, Including Application to Rapid Melting (Report 82-4). US Army Cold Regions Research and Engineering Laboratory, Hanover, NH.Google Scholar
  184. McPhee, M.G. (1986) The upper ocean. In: N. Untersteiner (ed.), Geophysics of Sea Ice (pp. 339–394). Plenum Press, New York.Google Scholar
  185. Mellor, M. (1986) The mechanical behavior of sea ice. In: N. Untersteiner (ed.), Geophysics of Sea Ice (pp. 165–281). Plenum Press, New York.Google Scholar
  186. Mironov, Ye.U. (1987) Estimation of the volume of sea ice in the Arctic Ocean taking pressure ridges into account. Polar Geography and Geology 11(1), 69–75.Google Scholar
  187. Mock, S.J., Hartwell, A., and Hibler, W.D., III (1972) Spatial aspects of pressure ridge statistics. Journal of Geophysical Research 77, 5945–5953.Google Scholar
  188. Muench, R.D. and Ahlnäs, K. (1976) Ice movement and distribution in the Bering Sea from March to June 1974. Journal of Geophysical Research 81(24), 4467–4476.Google Scholar
  189. Muench, R., Martin, S., and Overland, J.E. (eds) (1987) Marginal ice zone research. Journal of Geophysical Research 92(C7), 7225 pp. (special MIZEX issue).Google Scholar
  190. Multala, J., Hautaniemi, H., Oksama, M., Leppäranta, M., Haapala, J., Herlevi, A., Riska, K. and Lensu, M. (1996) Airborne electromagnetic mapping of sea ice thickness in the Baltic Sea. Cold Regions Science and Technology 24(4), 355–373.CrossRefGoogle Scholar
  191. Nansen, F. (1897) From över Polarhavet. Aschehoug, Kristiania, Norway.Google Scholar
  192. Nansen, F. (1902) The oceanography of the North Polar Basin. Norwegian North Polar Expedition 1893–1896: Scientific Results (Vol. III, No. 9, 427 pp.). Longman Green & Co., Kristiania, Norway.Google Scholar
  193. Neralla, V.R., Jessup, R.G., and Venkatesh, S. (1988) The Atmospheric Environment Service regional ice model (RIM) for operational applications. Marine Geodesy 12, 135–153.Google Scholar
  194. Nikiforov, E.G. (1957) Changes in the compactness of the ice cover in relation to its dynamics. Problemy Arktiki (Vyp. 2). Morskoi Transport Press, Leningrad [in Russian].Google Scholar
  195. Nikiforov, E.G., Gudkovich, Z.M., Yefimov, Yu.N., and Romanov, M.A. (1967) Principles of a method for calculating the ice redistribution under the influence of wind during the navigation period in Arctic seas. Trudy Arkticheskii i Antarkticheskii Nauchnoissledovatel’skii Institut 257, 5–25 [English translation in AIDJEX Bulletin 3, 40–64].Google Scholar
  196. Nye, J.F. (1973) The physical meaning of two-dimensional stresses in a floating ice cover. AIDJEX Bulletin 21, 1–8.Google Scholar
  197. Okubo, A. and Ozmidov, R.V. (1970) Empirical dependence of the coefficient of horizontal turbulent diffusion in the ocean on the scale of the phenomenon in question. Izvestiya Atmospheric and Oceanic Physics 6(5), 534–536.Google Scholar
  198. Omstedt, A. (1998) Freezing estuaries and semi-enclosed basins. In: M. Leppäranta (ed.), Physics of Ice-covered Seas (Vol. 2, pp. 483–516). Helsinki University Press.Google Scholar
  199. Omstedt, A., Nyberg, L., and Leppäranta, M. (1994) A Coupled Ice-Ocean Model Supporting Winter Navigation in the Baltic Sea: Part 1. Ice dynamics and water levels (Styrelsen för Vintersjöfartsforskning [Winter Navigation Research Board] Rep. No. 47, 17 pp.]. Board of Navigation, Norrköping, Sweden.Google Scholar
  200. Omstedt, A., Nyberg, L., and Leppäranta, M. (1996) The role of ice inertia in ice-ocean dynamics. Tellus 48A, 593–606.Google Scholar
  201. Ono, N. (1978) Inertial period motions of drifting ice. Low Temperature Science A37, 107–113.Google Scholar
  202. Overgaard, S., Wadhams, P. and Leppäranta, M. (1983) Ice properties in the Greenland and Barents Seas during summer. Journal of Glaciology 29(101), 142–164.Google Scholar
  203. Overland, J.E. (1985) Atmospheric boundary layer structure and drag coefficients over sea ice. Journal of Geophysical Research, 90(C5), 9029–9049.Google Scholar
  204. Overland, J.E. and Pease, C.H. (1988) Modeling ice dynamics of coastal seas. Journal of Geophysical Research 93(C12), 15619–15637.Google Scholar
  205. Overland, J.E., Walter, B.A., Curtin, T.B., and Turet, P. (1995) Hierarchy in sea ice mechanics: A case study from the Beaufort Sea. Journal of Geophysical Research 100(C3), 4559–4571.CrossRefGoogle Scholar
  206. Ovsienko, S. (1976) Numerical modeling of the drift of ice. Izvestiya, Atmospheric and Oceanic Physics 12(11), 1201–1206.Google Scholar
  207. Ovsienko, S., Zatsepa, S., and Ivchenko, A. (1999a) Study and modelling of behaviour and spreading of oil in cold water and in ice conditions. Proceedings 15th Conference on Port and Ocean Engineering under Arctic Conditions, Espoo, Finland.Google Scholar
  208. Ovsienko, S., Leppäranta, M., Zatsepa, S., and Ivchenko, A. (1999b) The use of ice tank experiment results for mesoscale sea ice modelling. Proc. 15th Conf. Port and Ocean Eng. Arctic Conditions, Espoo, Finland (Vol. 2, pp. 480–487).Google Scholar
  209. Palosuo, E. (1953) A treatise on severe ice conditions in the Central Baltic. Merentutkimuslartoksen Julkaisu/Havsforskningsinstitutets Skrift 156, 130.Google Scholar
  210. Palosuo, E. (1963) The Gulf of Bothnia in winter: II. Freezing and ice forms. Merentutkimuslartoksen Julkaisu/Havsforskningsinstitutets Skrift 209, 64.Google Scholar
  211. Parmerter, R.R. (1975) A model of simple rafting in sea ice. Journal of Geophysical Research 80(15), 1948–1952.Google Scholar
  212. Parmerter, R.R. and Coon, M.D. (1972) Model for pressure ridge formation in sea ice. Journal of Geophysical Research 77, 6565–6575.Google Scholar
  213. Paterson, W.S.B. (1995) The Physics of Glaciers (3rd edn). Pergamon Press, Oxford, UK.Google Scholar
  214. Pfirman, S.L., Eicken, H., Bauch, D., and Weeks, W.F. (1995) The potential transport of pollutants by Arctic sea ice. Science of the Total Environment, 159, 129–146.CrossRefGoogle Scholar
  215. Pond, S. and Pickard, G.L. (1983) Introductory Dynamical Oceanography (2nd edn). Pergamon Press, Oxford, UK.Google Scholar
  216. Pritchard, R.S. (1975) An elastic-plastic constitutive law for sea ice. Journal of Applied Mechanics 42E, 379–384.Google Scholar
  217. Pritchard, R.S. (1977) The effect of strength on simulations of sea ice dynamics. Proceedings of the 4th International Conference on Port and Ocean Engineering under Arctic Conditions (12 pp.). Memorial University of Newfoundland, St John’s, Canada.Google Scholar
  218. Pritchard, R.S. (ed.) (1980a) Proceedings of ICSI/AIDJEX Symposium on Sea Ice Processes and Models. University of Washington, Seattle.Google Scholar
  219. Pritchard, R.S. (1980b) Simulations of nearshore winter ice dynamics in the Beaufort Sea. In: R.S. Pritchard (ed.), Proceedings of ICSI/AIDJEX Symposium on Sea Ice Processes and Models (pp. 49–61). University of Washington, Seattle.Google Scholar
  220. Pritchard, R.S. (1981) Mechanical behaviour of pack ice. In: A.P.S. Selvadurai (ed.), Mechanics of Structured Media (Part A, pp. 371–405). Elsevier, North-Holland.Google Scholar
  221. Ramsay, W. (1949) Jääsaarron murtajat [The Breakers of the Ice Barrier]. K.F. Puromiehen kirjapaino, Helsinki.Google Scholar
  222. Rheem, C.K., Yamaguchi, H., and Hiroharu, K. (1997) Distributed mass/discrete floe model for pack ice rheology computation. Journal of Marine Science and Technology 2, 101–121.CrossRefGoogle Scholar
  223. Richter-Menge, J.A. and Elder, B.C. (1998) Characteristics of ice stress in the Alaskan Beaufort Sea. Journal of Geophysical Research 103(C10), 21817–21829.CrossRefGoogle Scholar
  224. Richter-Menge, J., McNutt, S.L., Overland, J.E. and Kwok, R. (2002) Relating arctic pack ice stress and deformation under winter conditions. Journal of Geophysical Research 107(C10), SHE 15 (doi:10.1029/2000JC000477).Google Scholar
  225. Rodahl, K. (1954) T-3 (179 pp.). Gyldendal, Oslo.Google Scholar
  226. Rossby, C.G. and Montgomery, R.G. (1935) Frictional Influence in Wind and Ocean Currents (Papers in Physical Oceanography and Meteorology Vol. 3, No. 3, 101 pp.). Massachusetts Institute of Technology and Woods Hole Oceanographic Institute, Cambridge, MA.CrossRefGoogle Scholar
  227. Rossiter, J.R. and Holladay, J.S. (1994) Ice thickness measurement. In: S. Haykin, E.O. Lewis, R.K. Ramey, and J.R. Rossiter (eds), Remote Sensing of Sea Ice and Icebergs (pp. 141–176) John Wiley & Sons, New York.Google Scholar
  228. Rossiter, J.R., Butt, K.A., Gamberg, J.B., and Ridings, T.F. (1980) Airborne impulse radar sounding of sea ice. Proceedings of Sixth Canadian Symposium on Remote Sensing (pp. 187–194).Google Scholar
  229. Rothrock, D.A. (1975a) The energetics of the plastic deformation of pack ice by ridging. Journal of Geophysical Research 80(33), 4514–4519.Google Scholar
  230. Rothrock, D.A. (1975b) The mechanical behavior of pack ice. Annual Review of Earth and Planetary Sciences 3, 317–342.CrossRefGoogle Scholar
  231. Rothrock., D.A. (1975c) The steady drift of an incompressible Arctic ice cover. Journal of Geophysical Research 80(3), 387–397.Google Scholar
  232. Rothrock, D.A. (1986). Ice thickness distribution — measurement and theory. In: N. Untersteiner (ed.), The Geophysics of Sea Ice (pp. 551–575). Plenum Press, New York.Google Scholar
  233. Rothrock, D.A. and Hall, R. (1975) Testing the redistribution of sea ice thickness from ERTS photographs. AIDJEX Bulletin 19, 1–19.Google Scholar
  234. Rothrock, D.A. and Thorndike, A.S. (1980) Geometric properties of the underside of sea ice. Journal of Geophysical Research 85(C7), 3955–3963.Google Scholar
  235. Rothrock, D.A. and Thorndike, A.S. (1984) Measuring the sea ice floe size distribution. Journal of Geophysical Research 89(C4), 6477–6486.Google Scholar
  236. Rudels, B. (1998) Aspects of Arctic oceanography. In: M. Leppäranta (ed.), Physics of Ice-covered Seas (Vol. 2, pp. 517–568). Helsinki University Press.Google Scholar
  237. Sanderson, T.J.O. (1988) Ice Mechanics: Risks to offshore structures (253 pp.). Graham & Trotman, Boston.Google Scholar
  238. Savage, S.B. (1995) Marginal ice zone dynamics modelled by computer simulations involving floe collisions. In: E. Guazelli and L. Oger (eds), Mobile, Particulate Systems (pp. 305–330). Kluwer Academic, Norwell, MA.Google Scholar
  239. Schaefer, J.A. and Ettema, R. (1986) Experiments on freeze-bonding between ice blocks in floating ice rubble. Proceedings of 8th IAHR Ice Symposium, Iowa City, IA (Vol. 1, pp. 401–413).Google Scholar
  240. Schwarz, J. and Weeks, W.F. (1977) Engineering properties of sea ice. Journal of Glaciology 19(81), 499–531.Google Scholar
  241. Semtner, A. (1976) A model for the thermodynamic growth of sea ice in numerical investigations of climate. Journal of Physical Oceanography 6(3), 379–389.CrossRefGoogle Scholar
  242. Shen, H.H., Hibler, W.D., III, and Leppäranta, M. (1986) On applying granular flow theory to a deforming broken ice field. Acta Mechanica 63, 143–160.CrossRefGoogle Scholar
  243. Shen, H.H., Hibler, W.D., III, and Leppäranta, M. (1987) The role of ice floe collisions in sea ice rheology. Journal of Geophysical Research 92(C7), 7085–7096.Google Scholar
  244. Shen, H.T., Shen, H.H., and Tsai, S.M. (1991) Dynamic transport of river ice. Journal of Hydraulic Research 28(6), 659–671.CrossRefGoogle Scholar
  245. Shen, H.T., Chen, Y.C., Wake, A., and Crissman, R.D. (1993) Lagrangian discrete parcel simulation of two-dimensional river ice dynamics. International Journal of Offshore and Polar Engineering 3(4), 328–332.Google Scholar
  246. Shirasawa, K. (1986) Water stress and ocean current measurements under first-year sea ice in the Canadian Arctic. Journal of Geophysical Research 91(C12), 14305–14316.Google Scholar
  247. Shirasawa, K. and Ingram, R.G. (1991) Characteristics of the turbulent oceanic boundary layer under sea ice: Part 1. A review of the ice-ocean boundary layer. Journal of Marine Systems, 2, 153–160.CrossRefGoogle Scholar
  248. Shirasawa, K. and Ingram, R. G. (1997) Currents and turbulent fluxes under the first-year sea ice in Resolute Passage, Northwest Territories, Canada. Journal of Marine Systems, 11, 21–32.CrossRefGoogle Scholar
  249. Shirokov, K.P. (1977) Vliyanie splochennosti na vetrovoj dreif l’dov. Sbornik Rabot Leningradskoye Gidrometeorologicheskoye Obsestvo 9, 46–53 [in Russian].Google Scholar
  250. Shuleikin, V.V. (1938) Drift of ice fields. Doklady Academy of Sciences USSR 19(8), 589–594.Google Scholar
  251. Smith, S.D. (1972) Wind stress and turbulence over a flat ice floe. Journal of Geophysical Research 77, 3886–3901.Google Scholar
  252. Smith, S.D. (1980) Wind stress and heat flux over the ocean in gale force winds. Journal of Physical Oceanography 10, 709–726.CrossRefGoogle Scholar
  253. Squire, V. (1998) The marginal ice zone. In: M. Leppäranta (ed.), Physics of Ice-covered Seas (Vol. 1, pp. 381–446). Helsinki University Press.Google Scholar
  254. Squire, V.A., Dugan, J., Wadhams, P., Rottier, P.J., and Liu, A.K. (1995) Of ocean waves and sea ice. Annual Review of Fluid Mechanics 27, 115–168.CrossRefGoogle Scholar
  255. Steffen, K. and Lewis, J.E. (1988) Surface temperatures and sea ice typing for northern Baffin Bay. International Journal of Remote Sensing 9(3), 409–422.Google Scholar
  256. Stössel, A., Lemke, P., and Owens, W.P. (1990) Coupled sea ice-mixed layer simulations for the Southern Ocean. Journal of Geophysical Research 95(C6), 9539–9555.Google Scholar
  257. Strass, V.H. and Fahrbach. E. (1998) Temporal and regional variation of sea ice drift and coverage in the Weddell Sea obtained from upward-looking sonars. In: M.O. Jeffries, (ed.), Antarctic Sea Ice: Physical Processes, Interactions and Variability (Antarctic Research Series No. 74, pp. 123–139). American Geophysical Union, Washington, DC.Google Scholar
  258. Stull, R.B. (1988) An Introduction to Boundary-layer Meteorology (666 pp.). Kluwer Academic, Dordrecht, The Netherlands.Google Scholar
  259. Sun, Y. (1996) Automatic ice motion retrieval from ERS-1 SAR images using the optical flow method. International Journal of Remote Sensing 17(11), 2059–2087.Google Scholar
  260. Sverdrup, H.U. (1928). The wind-drift of the ice on the North Siberian Shelf: The Norwegian north polar expedition with the “Maud” 1918–1925. Scientific Results 4(1), 1–46.Google Scholar
  261. Tabata, T. (1971) Measurements of strain of ice field off the Okhotsk Sea Coast of Hokkaido. Low Temperature Science A29, 199–211 [with English summary].Google Scholar
  262. Tabata, T. (1972) Radar network for drift ice observations in Hokkaido. In: T. Karlsson (ed.), Sea Ice: Proceedings of International Conference (pp. 67–71). National Research Council, Reykjavik.Google Scholar
  263. Tabata, T., Kawamura, T., and Aota, M. (1980) Divergence and rotation of an ice field off Okhotsk Sea coast off Hokkaido. In: R.S. Pritchard (ed.), Sea Ice Processes and Models (pp. 273–282). University of Washington Press, Seattle.Google Scholar
  264. Tennekes, H. and Lumley, J.L. (1972) A First Course in Turbulence (300 pp.). MIT Press, Cambridge, MA.Google Scholar
  265. Thomas, D.N. and Dieckmann, G.S. (2003) Sea Ice: An introduction to its physics, chemistry, biology and geology (402 pp.). Blackwell Publishing, Oxford, UK.Google Scholar
  266. Thorndike, A.S. (1986) Kinematics of sea ice. In: N. Untersteiner (ed.), Geophysics of Sea Ice (pp. 489–549). Plenum Press, New York.Google Scholar
  267. Thorndike, A.S. and Colony, R. (1980) Large-scale ice motion in the Beaufort Sea. In: R.S. Pritchard (ed.), Proceedings of ICSI/AIDJEX Symposium on Sea Ice Processes and Models (pp. 249–260). University of Washington, Seattle.Google Scholar
  268. Thorndike, A.S. and Colony, R. (1982) Sea ice response to geostrophic winds. Journal of Geophysical Research 87(C8), 5845–5852.Google Scholar
  269. Thorndike, A.S., Rothrock, D.A., Maykut, G.A., and Colony, R. (1975) The thickness distribution of sea ice. Journal of Geophysical Research 80, 4501–4513.Google Scholar
  270. Timco, G.W. and Burden, R.P. (1997) An analysis of the shapes of sea ice ridges. Cold Regions Science and Technology 25, 65–77.CrossRefGoogle Scholar
  271. Timmermann, R., Beckmann, A. and Hellmer, H.H. (2002) Simulations of ice-ocean dynamics in the Weddell Sea: 1. Model configuration and validation. Journal of Geophysical Research 107(C3), 10.Google Scholar
  272. Timokhov, L.A. (1998) Ice dynamics models. In: M. Leppäranta (ed.), Physics of Ice-covered Seas (Vol. 1, pp. 343–380). Helsinki University Press.Google Scholar
  273. Timokhov, L.A. and Kheysin, D.Ye. (1987) Dynamika Morskikh L’dov. Gidrometeoizdat, Leningrad [in Russian].Google Scholar
  274. Tinz, B. (1996) On the relation between annual maximum ice extent of ice cover in the Baltic Sea and sea level pressure as well as air temperature field. Geophysica, 32, 319–341.Google Scholar
  275. Tuhkuri, J. and Lensu, M. (1997) Ice Tank Tests on Rafting of a Broken Ice Field (Report M-218). Helsinki University of Technology, Ship Laboratory.Google Scholar
  276. Udin, I. and Ullerstig, A. (1976) A Numerical Model for the Forecasting of Ice Motion in the Bay and Sea of Bothnia (Styrelsen for Vintersjöfartsforskning [Winter Navigation Research Board] Report No. 18). Board of Navigation, Norrköping, Sweden.Google Scholar
  277. Ukita, J. and Moritz, R. (1995) Yield curves and flow rules of pack ice. Journal of Geophysical Research 100(C3), 4545–4557.CrossRefGoogle Scholar
  278. Untersteiner, N. (1984) The cryosphere. In: J.T. Houghton (ed.), The Global Climate (pp. 121–140). Cambridge University Press, New York.Google Scholar
  279. Van Hejst, G.J.F. (1984) An analytical model for ice-edge upwelling. Geophysical and Astrophysical Fluid Dynamics 29, 155–177.Google Scholar
  280. Vasiliev, K.P. (1985) Sea-ice Forecasting. Marine Meteorology and Related Oceanographic Activities (Report No. 14, pp. 50–59, Scientific Lectures at CMM-IX). WMO, Geneva.Google Scholar
  281. Venkatesh, S., El-Tahan, H., Comfort, G., and Abdelnour, R. (1990) Modelling the behaviour of oil spills in ice-infested waters. Atmosphere-Ocean 28(3), 303–329.Google Scholar
  282. Vesecky, J.F., Samadani, R., Smith, M.P., Daida, J.M., and Bracewell, R.N. (1988) Observation of sea-ice dynamics using synthetic aperture radar images: Automated analysis. IEEE Transactions on Geoscience and Remote Sensing GE-26(1), 38–48.CrossRefGoogle Scholar
  283. Vinje, T. and Berge, T. (1989) Upward Looking Sonar Recordings at 75°N-12° W from 22 June 1987 to 20 June 1988 (Data report. Nr. 51). Norsk Polarinstitutt, Oslo.Google Scholar
  284. Volkov, V.A., Johannessen, O.M., Borodachev, V.E., Voinov, G.N., Pettersson, L.H., Bobylev, L.P. and Kouraev, A.V. (2002) Polar Seas Oceanography. An Integrated Case Study of the Kara Sea (450 pp.). Springer-Praxis, Chichester, UK.Google Scholar
  285. Wadhams, P. (1978) Wave decay in the marginal ice zone measured from a submarine. Deepsea Research 25, 23–40.Google Scholar
  286. Wadhams, P. (1980a). A comparison of sonar and laser profiles along corresponding tracks in the Arctic Ocean. In: R.S. Pritchard (ed.), Sea Ice Processes and Models (pp. 283–299). University of Washington Press, Seattle.Google Scholar
  287. Wadhams, P. (1980b) Ice characteristics in the seasonal sea ice zone. Cold Regions Science and Technology 2, 37–87.CrossRefGoogle Scholar
  288. Wadhams, P. (1981) Sea-ice topography of the Arctic Ocean in the region 70°W to 25°E. Philosophical Transactions of the Royal Society of London A302, 45–85.Google Scholar
  289. Wadhams, P. (1998) Sea ice morphology. In: M. Leppäranta (ed.), Physics of Ice-covered Seas (Vol. 1, pp. 231–287). Helsinki University Press.Google Scholar
  290. Wadhams, P. (2000) Ice in the Ocean. Gordon & Breach Science, Amsterdam.Google Scholar
  291. Wadhams, P. and Davy, T. (1986) On the spacing and draft distributions for pressure ridge keels. Journal of Geophysical Research, 91(C9), 10697–10708.Google Scholar
  292. Wadhams, P., Martin, S., Johannessen, O.M., Hibler, W.D., III, and Campbell, W.J. (eds) (1981) MIZEX: A program for mesoscale air-ice-ocean experiments in the Arctic marginal ice zones. I. Research strategy (CRREL Special Report 81-19, 20 pp.). Cold Regions Research and Engineering Laboratory, Hanover, NH.Google Scholar
  293. Wadhams, P., Lange, M.A., and Ackley, S.F. (1987) The ice thickness distribution across the Atlantic sector of the Antarctic Ocean in midwinter. Journal of Geophysical Research 92(C13), 14535–14552.Google Scholar
  294. Wake, A. and Rumer, R.R. (1983) Great Lakes ice dynamics simulation. Journal of Waterway, Port, Coastal and Ocean Engineering 109, 86–102.CrossRefGoogle Scholar
  295. Wang, J., Mysak, L.A., and Ingram, R.G. (1994) A numerical simulation of sea ice cover in Hudson Bay. Journal of Physical Oceanography 24, 2515–2533.CrossRefGoogle Scholar
  296. Wang, K., Leppäranta, M., and Kouts, T. (2003) A model for sea ice dynamics in the Gulf of Riga. Proceedings of Estonian Academy of Sciences, Engineering 9(2), 107–125.Google Scholar
  297. Waters, J.K. and Bruno, M.S. (1995) Internal wave generation by ice floes moving in stratified water: Results from a laboratory study. Journal of Geophysical Research 100(C7), 13635–13639.CrossRefGoogle Scholar
  298. Weeks, W.F. (1980) Overview. Cold Regions Science and Technology 2, 1–35.CrossRefGoogle Scholar
  299. Weeks, W.F. (1998a) Growth conditions and structure and properties of sea ice. In: M. Leppäranta (ed.), Physics of Ice-covered Seas (Vol. 1, pp. 25–104). Helsinki University Press.Google Scholar
  300. Weeks, W.F. (1998b) The history of sea ice research. In: M. Leppäranta (ed.), Physics of Ice-covered Seas (Vol. 1, pp. 1–24). Helsinki University Press.Google Scholar
  301. Weeks, W.F. and Ackley, S.F. (1986) The growth, structure and properties of sea ice. In: N. Untersteiner (ed.), Geophysics of Sea Ice (pp. 9–164). Plenum Press, New York.Google Scholar
  302. Weeks, W.F., Tucker, W.B., III, Frank, M., and Fungcharon, S. (1980) Characterization of surface roughness and floe geometry of sea ice over the continental shelves of the Beaufort and Chukchi Seas. In: R.S. Pritchard (ed.), Proceedings of ICSI/AIDJEX Symposium on Sea Ice Processes and Models, University of Washington, Seattle (pp. 300–312) [cited in Rothrock and Thorndike (1984).Google Scholar
  303. Weeks, W.F., Ackley, S.F. and Govoni, J. (1989) Sea ice ridging in the Ross Sea, Antarctica, as compared with sites in the Arctic. Journal of Geophysical Research 94, 4984–4988.CrossRefGoogle Scholar
  304. Williams, E., Swithinbank, C.W.M., and Robin, G. de Q. (1975) A submarine sonar study of Arctic pack ice. Journal of Glaciology 15(73), 349–362.Google Scholar
  305. Wittman, W.J. and Schule, J.J., Jr (1966) Comments on the mass budget of Arctic pack ice. Symposium on Arctic Heat Budget and Atmospheric Circulation (pp. 215–246). RAND Corporation, Santa Monica, CA.Google Scholar
  306. WMO (1970) The WMO Sea-Ice Nomenclature (WMO No. 259, TP-145, with later supplements). WMO, Geneva.Google Scholar
  307. WMO (2000) Sea-Ice Information Services in the World (WMO No. 574). WMO, Geneva.Google Scholar
  308. Worby, A.P., Massom, R.A., Allison, I., Lytle, V.I., and Heil, P. (1998) East Antarctic sea ice: A review of structure, properties and drift. In: M.O. Jeffries (ed.), Antarctic Sea Ice: Physical properties, interactions and variability (Antarctic Research Series 74, pp. 41–67). American Geophysical Union, Washington, DC.)Google Scholar
  309. Wright, B., Hnatiuk, J., and Kovacs, A. (1978) Sea ice pressure ridges in the Beaufort Sea. Proceedings of IAHR Ice Symposium, Luleå, Sweden.Google Scholar
  310. Wu, H.-D. and Leppäranta, M. (1990) Experiments in numerical sea ice forecasting in the Bohai Sea. Proceedings of IAHR Ice Symposium 1990, Espoo, Finland (Vol. III, pp. 173–186).Google Scholar
  311. Wu, H., Bai, S., and Li, G. (1997) Sea ice conditions and forecasts in China. Proceedings of. 12th International Symposium on Okhotsk Sea and Sea Ice (pp. 164–174). Okhotsk Sea & Cold Ocean Research Association, Mombetsu, Hokkaido, Japan.Google Scholar
  312. Wu, H., Bai, S., and Zhang, Z. (1998) Numerical sea ice prediction in China. Acta Oceanologica Sinica, 17(2), 167–185.Google Scholar
  313. Zhang, J., Thomas, D.B., Rothrock, D.A., Lindsay, R.W., and Yu, Y. (2003) Assimilation of ice motion observations and comparisons with submarine ice thickness data. Journal of Geophysical Research 108(C6), 3170, doi: 10.1029/2001JC001041.CrossRefGoogle Scholar
  314. Zhang, J., Hibler, W.D., III, Steele, M., and Rothrock, D.A. (1998) Arctic ice-ocean modeling with and without climate restoring. Journal of Physical Oceanography 28, 1745–1748.Google Scholar
  315. Zhang, Z. (2000) Comparisons between observed and simulated ice motion in the northern Baltic Sea. Geophysica 36(1–2), 111–126.Google Scholar
  316. Zhang, Z. and Leppäranta, M. (1995) Modeling the influence of ice on sea level variations in the Baltic Sea. Geophysica 31(2), 31–46.Google Scholar
  317. Zubov, N.N. (1945) L’dy Arktiki [Arctic Ice]. Izdatel’stvo Glavsermorputi, Moscow [English translation 1963 by US Naval Oceanographical Office and American Meteorological Society, San Diego].Google Scholar
  318. Zwally, H.J. and Walsh, J.E. (1987) Comparison of observed and modelled ice motion in the Arctic Ocean. Annals of Glaciology 9, 1–9.Google Scholar

Copyright information

© Praxis Publishing Ltd 2005

Personalised recommendations