Skip to main content

Neue Prüfkonzepte für Primärstabilität und Dauerfestigkeit mandibulärer Osteosynthesesysteme sowie für mathematische Modelle des Kausystems

  • Chapter
Bionik

Zusammenfassung

Zur Prüfung mathematischer Modelle des Kauapparates sowie der Primärstabilität und des Ermüdungsverhaltens entsprechender Osteosynthesesysteme wurden viele verschiedene Methoden publiziert. Im Gegensatz zur unteren Extremität sind wesentliche biomechanische interne Einflussgrößen des Kausystems, wie funktionelle Lasten, unzureichend erforscht und nachgewiesen. Folglich wurden bisher keine Normen zur Prüfung von Osteosynthese- und Rekonstruktionsplatten am Unterkiefer formuliert. Hier wird als Zwischenergebnis von sechs Jahren intensiver theoretischer und praktischer Forschungsarbeit ein multifunktioneller Prüfaufbau anhand relevanter klinischer Beispiele vorgestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abeln A (2004) Primärstabilität von Staples aus Formgedächtnismaterial vs. Plattenosteosynthese am Beispiel der Frakturposition 3 am Unterkiefer-eine biomechanische Studie. Zahnmedizinische Dissertation, Technische Universität München

    Google Scholar 

  2. Ahn DK, Sims CD, Randolph MA, O'Connor D, Butler EM, Amarante MTJ, Yaremchuk MJ (1997) Craniofacial skeletal fixation using biodegradable plates and cyanoacrylate glue. Plast Reconstr Surg 99: 1508

    PubMed  Google Scholar 

  3. Baragar FA, Osborn JW (1993) A model relating patterns of human jaw movement to biomechanical constraints. J Biomech 17: 757–767

    Article  Google Scholar 

  4. Bergmann G, Graichen F, Rohlmann A (1993) Hip joint loading during walking and running, measured in two patients. J Biomech 26: 969–990

    Article  PubMed  Google Scholar 

  5. Choi BH, Kim KN, Kim HJ, Kim MK (1999) Evaluation of condylar neck fracture plating techniques. J Cran Max Surg 27: 109–112

    Article  Google Scholar 

  6. Clason C (2001) Lösung eines inversen Problems aus der Biomechanik via Finite Elemente. Mathematische Diplomarbeit, Ludwig-Maximilians-Universität München

    Google Scholar 

  7. Clason C, Hinz AM, Schieferstein H (submitted) A Method for Material Parameter Determination for the Human Mandible Based on Simulation and Experiment. Comput Meth Biomech Biomed Eng

    Google Scholar 

  8. DeBoever JA, McCall WD, Holder S, Ash MM (1996) Funcional occlusal forces: an investigation by telemetry. J Prosthet Dent 40: 326–33

    Google Scholar 

  9. Edwards TJC, David DJ (1996) A comparative study of miniplates used in the treatment of mandibular fractures. Plast Reconstr Surg 97: 1150–1157

    PubMed  Google Scholar 

  10. Eichhorn S, Schieferstein H (2003) Mandibulator-eine PC-gesteuerte hydraulisch angetriebene Maschine zur Simulation von Bewegungen und Belastungen des menschlichen Unterkiefers. In: Jamal R, Jaschinski H (Hrsg) Virtuelle Instrumente in der Praxis: Begleitband zum Kongress VIP 2003. Hüthig, Heidelberg, pp 437–444

    Google Scholar 

  11. Eijden TMGJ van, Klok EM, Weijs WA, Koolstra JH (1988) Mechanical capabilities of the human jaw muscles with a mathematical model. Arch Oral Biol 33: 819–826

    Article  PubMed  Google Scholar 

  12. Emshoff R, Schoning H, Rothler G, Waldhart E (1997) Trends in the incidence and cause of sport-related mandibular fractures: a retrospective analysis. J Oral Maxillofac Surg 55: 585–592

    Article  PubMed  Google Scholar 

  13. Faulkner MG, Hatcher DC, Hay A (1987) A three-dimensional investigation of temporomandibular joint loading. J Biomech 20: 997–1002

    Article  PubMed  Google Scholar 

  14. Foley WL, Beckmann JW (1992) In vitro comparision of screw vs plate fixation in the sagittal split osteotomy. Int J Adult Orthod Orthognath Surg 7: 147–151

    Google Scholar 

  15. Hammer B, Ettlin D, Rahn B, Brein J (1995) Stabilization of the short sagittal split osteotomy: in vitro testing of different plate and screw configurations. J Cranio Maxillo Fac Surg 23: 321–324

    Article  Google Scholar 

  16. Hatcher DC, Faulkner MG, Hay A (1986) Development of mechanical and mathematic models to study temporomandibular joint loading. J Porst Dent 55: 377–384

    Google Scholar 

  17. Haug RH, Fattahi TT, Goltz M (2001) A biomechanical evaluation of mandibular angle fracture plating techniques. J Oral Maxillofac Surg 59: 1199–1210

    Article  PubMed  Google Scholar 

  18. Joos U, Piffko J, Meyer U (2001) Neue Aspekte in der Versorgung von Unterkieferfrakturen. Mund-Kiefer-Gesichts-Chir 5: 2–16

    Article  Google Scholar 

  19. Jürgens P, Wetzel T, Sader R, Eichhorn S, Schieferstein H, Zeilhofer HF (2004) NiTi-Staples versus Plattenosteosynthese: biomechanische Untersuchungen zur Frakturversorgung am Unterkiefer. Internationale Biomechanik-und Biomaterial-Tage, Technische Universität München, 16.–17. Juli 2004

    Google Scholar 

  20. Koolstra JH, Eijden TMGJ van (2001) A method to predict muscle control in the kinematically and mechanically indeterminate human masticatory system. J Biomech 34: 1179–1188

    Article  PubMed  Google Scholar 

  21. Koolstra JH, Eijden TMGJ van (1992) Application and validation of a three-dimensional mathematical model of the human masticatory system in vivo. J Biomech 25: 175–187

    Article  PubMed  Google Scholar 

  22. Koolstra JH, Eijden TMGJ van (1996) Influence of dynamical properties of the human masticatroy muscles on Jaw closing Movements. Europ J Morphology 34: 11–18

    Article  Google Scholar 

  23. Koolstra JH, Eijden TMGJ van (1999) Three-dimensional dynamical capabilities of the human mysticatory muscles. J Biomech 21: 145–152

    Article  Google Scholar 

  24. Koolstra JH, Eijden TMGJ van, Weijs WA, Naeije M (1988) A three-dimensional mathematical model of the human masticatory system predicting maximum possible bite forces. J Biomech 21: 563–576

    Article  PubMed  Google Scholar 

  25. Korioth TWP, Hannam AG (1990) Effect of bilateral asymmetric tooth clenching on load distribution at the mandibular condyles. J Prost Dent 64: 62–73

    Google Scholar 

  26. Kroon FHM, Mathisson M, Cordey JR, Rahn BA (1991) The use of miniplates in mandibular fractures. J Cranio-Fac Surg 19: 199–204

    Article  Google Scholar 

  27. Kukiz P, Pistner H, Priessnitz B, Reuther JF, Thull R (1995) Rechnergestütztes piezokeramisches miniaturisiertes Kaukraftmesssystem. Biomed Tech 40(1): 381–382

    Google Scholar 

  28. Laster Z, MacBean AD, Ayliffe PR, Newlands LC (2001) Fixation of a frontozygomatic fracture with a shape-memory staple. Brit J Oral Maxillofac Surg 39: 324–325

    Article  Google Scholar 

  29. Lafreniere CM, Lamontagna M, El-Sway R (1997) The role of the lateral pterygoid muscles in TMJ disorders during static conditions. J Craniomand Prac 15: 38–52

    Google Scholar 

  30. Lischka M, Schieferstein H, Schreiber U, Steinhauser E, Gradinger R (2000) Sonder-prüfstand zur Simulation von in-vivo-Belastungsmustern. In: Jamal R, Jaschinski H (Hrsg) Virtuelle Instrumente in der Praxis: Begleitband zum Kongress Virtuelle Instrumente in der Praxis (VIP) 2000. Hüthig, Heidelberg

    Google Scholar 

  31. Lundgren D, Laurell L (1986) Occlusal force pattern during chewing and biting in dentitions restored with fixed bridges of cross-arch extension. Part I: bilateral end abutments. 57–71. Part II: unilateral prosterior two-unit candilevers. J Oral Reh 13: 191–203

    Google Scholar 

  32. Manns A, Miralles R, Palazzi C (1979) EMG, bite force, and elongation of the masseter unter isometric voluntary contractions and variations of vertical dimension. J Prost Dent 42: 674–682

    Google Scholar 

  33. Mao J, Osborn JW (1994) Direction of a bite force determines the pattern of activity in jaw-closing muscles. J Dent Res 73: 1112–1120

    PubMed  Google Scholar 

  34. May B, Saha S, Saltzman M (2001) A three-dimensional mathematical model of temporomandibular joint loading. J Clin Biomech 16: 489–495

    Article  Google Scholar 

  35. Meyer C, Kahn JL, Boutemy P, Wilk A (1998) Determination of the external forces applied to the mandible during various chewing tasks. J Cran Max Surg 26: 331–341

    Article  Google Scholar 

  36. Meyer C, Kahn JL, Lambert A, Boutemy P, Wilk A (2000) Development of a static simulator of the mandible. J Cran Max Surg 28: 278–286

    Article  Google Scholar 

  37. Meyer U, Vollmer D, Homann C, Schuon R, Benthaus S, Vegh A, Felszegi E, Joos U, Piffko J (2000) Experimentelle und Finite-Elemente-Analyse und Biomechanik des Unterkiefers unter Belastung. Mund-Kiefer-Gesichts-Chir 4: 14–20

    Article  Google Scholar 

  38. Neeman H, McCall W, Plesh O, Bishop B (1990) Analysis of jaw movements and masticatory muscle activity. Comp Meth Prog Biomed 31: 19–32

    Article  Google Scholar 

  39. Neff A (2003) Funktionsstabile Osteosynthese bei Frakturen der Gelenkwalze: Ergebnisse experimenteller und klinischer Untersuchungen. Medizinische Habilitationsschrift, Technische Universität München

    Google Scholar 

  40. Osborn JW (1995) Biomechanical implications of lateral pterygoid contribution to biting and jaw opening in humans. J Biomech 40: 1099–1108

    Google Scholar 

  41. Ostry DJ, Flanagan JR (1989) Human jaw movement in mastication and speech. Arch oral Biol 34: 685–693

    Article  PubMed  Google Scholar 

  42. Ottenhoff FAM, Bilt A van der, Glas HW van der, Bosman F (1992) Control of elevator muscle activity during simulated chewing with varying food resistance in humans. J Neurophysiol 68: 933–944

    PubMed  Google Scholar 

  43. Ottenhoff FAM, van der Bilt A, van der Glas HW, Bosman F, Abbink JH (1996) The relationship between jaw elevator muscle surface electromyogram and simulated food resistance during dynamic condition in humans. J Oral Rehab 23: 270–279

    Google Scholar 

  44. Paphangkorakit J, Osborn JW (1997) Effect of jaw opening on the direcion and magnitude of human incisal bite forces. J Dent Res 75: 561–567

    Google Scholar 

  45. Ralph JP, Caputo AA (1975) Analysis of stress patterns in the human mandible. J Dent Res 54: 814–821

    PubMed  Google Scholar 

  46. Righi E, Carta M, Bruzzone AA, Lonardo PM, Marinaro E, Pastorino A (1996) Experimantal analysis of internal rigid fixation osteosynthesis performed with titanium bone screw and plate systems. J Cranio-Max Surg 24: 53–57

    Article  Google Scholar 

  47. Sader R, Schieferstein H, Keller T, Abeln A, Exner B, Zeilhofer HF (2004) Entwicklung und Testung eines neuen Osteosyntheseklammerverfahrens aus Formgedächtnismaterial. 23. Internationales Symposium für Mund-Kiefer-Gesichtschirurgen, St. Anton am Arlberg, 14.–21. Februar 2004

    Google Scholar 

  48. Schieferstein H (2003) Experimentelle Analyse des menschlichen Kausystems. Dissertation, Technische Universität München, Utz, München

    Google Scholar 

  49. Schieferstein H, Abeln A, Sader R, Zeilhofer HF (submitted) Primary stability of mandibular osteosyntheses at fracture position 3-a biomechanical study of shape memory alloy staples vs. titanium plates. Int J Oral Maxillofac Surg

    Google Scholar 

  50. Shetty V, McBrearty D, Fourney M, Caputo AA (1995) Fracture line stability as a function of the internal fixation system: an in vitro comparison using a mandibular angle fracture model. J Oral Maxillofac Surg 53: 791–801

    Article  PubMed  Google Scholar 

  51. Sikes JW, Smith BR, Mukherjee DP, Coward KA (1998) Comparison of fixation strengths of locking head and conventional screws, in fracture and reconstruction models. J Oral Maxillofac Surg 56: 468–473

    Article  PubMed  Google Scholar 

  52. Sobotta J (1982) Atlas der Anatomie des Menschen. Bd. 1: Kopf, Hals, obere Extremitäten. 18. Aufl., Urban & Schwarzenberg, München

    Google Scholar 

  53. Sonnenburg M, Härtel J (1978) Biomechanische Untersuchungen verschiedener Osteosyntheseverfahren am spannungsoptischen Unterkiefermodell. Stomatol DDR 28: 83–94

    PubMed  Google Scholar 

  54. Standlee JP, Caputo AA, Ralph JP (1981) The condyle as a stress-distributing component of the temporomandibular joint. J Oral Rehab 8: 391–400

    Google Scholar 

  55. Strackee SD, Kroon FHM, Bos KE (2001) Fixation methods in mandibular reconstruction using fibula grafts: a comparative study into the relative strength of three different types of osteosyntheses. Head Neck 23: 1–7

    Article  Google Scholar 

  56. Tams J, Loon JP van; Otten E, Rozema FR, Bos RRM (1997) A three-dimensional study of bending and torsion moments for different fracture sites in the mandible: an in vitro study. J Oral Maxillofac Surg 26: 383–388

    Google Scholar 

  57. Yatabe M, Zwijnenburg A, Megens CCEJ, Naeije M (1997) Movements of the mandibular condyle kinematic center during jaw opening and closing. J Dent Res 76: 714–719

    PubMed  Google Scholar 

  58. Ziccardi VB et al. (1997) Wurzburg Lag screw plate vs four-hole miniplate for the treatment of condylar neck fractures. J Oral Max Surg 55: 602–606

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schieferstein, H., Eichhorn, S., Steinhauser, E., Sader, R., Zeilhofer, HF. (2005). Neue Prüfkonzepte für Primärstabilität und Dauerfestigkeit mandibulärer Osteosynthesesysteme sowie für mathematische Modelle des Kausystems. In: Bionik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26948-7_33

Download citation

Publish with us

Policies and ethics