Impact Force Tangential Force Solder Ball Bond Force Ball Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Felber, W. Nehls, “Method and apparatus for measuring the vibration amplitude on an energy transducer”, U. S. patent application publication No. 5 1996 30, April 6, 1993.Google Scholar
  2. 2.
    P. Hess, A. Greber, M. Michler, N. Onda, “Method and Device for Measuring the Amplitude of a Freely Oscillating Capillary of a Wire Bonder”, US patent application publication No. 2003/0159514A1, August 28, 2003.Google Scholar
  3. 3.
    M. Mayer, M. Melzer, “Method for the Calibration of a Wire Bonder”, US patent application publication No. 2003/0146267A1, August 7, 2003.Google Scholar
  4. 4.
    M. Mayer, O. Paul, D. Bolliger, H. Baltes, “In-Situ Calibration of Wire Bonder Ultrasonic System using Integrated Microsensor”, Proc. 2nd IEEE Electr. Packaging Technol. Conf. EPTC’98, Singapore, pp. 219–223, 1998.Google Scholar
  5. 5.
    M. Mayer, J. Schwizer, “Ultrasound Bonding: Understanding How Process Parameters Determine the Strength of Au-Al Bonds,” Proc. International Symposium on Microelectronics IMAPS, pp. 626–631, 2002.Google Scholar
  6. 6.
    M. Mayer, J. Schwizer, “Method for the Calibration of a Wire Bonder”, US patent application publication No. 2003/0080176A1, May 1, 2003.Google Scholar
  7. 7.
    M. Mayer, “Microelectronic Bonding Process Monitoring by Integrated Sensors,” Ph.D. Thesis, No. 13685, ETH Zurich, Zurich, 2000.Google Scholar
  8. 8.
    M. Mayer, J. Schwizer, O. Paul, H. Baltes, “In-situ Ultrasonic Stress Measurement During Ball Bonding using Integrated Piezoresistive Microsensors,” Proc. Intersociety Electron. Pack. Conf. (InterPACK99), pp. 973–978, 1999.Google Scholar
  9. 9.
    J. Schwizer, M. Mayer, D. Bolliger, O. Paul, H. Baltes, “Thermosonic Ball Bonding: Friction Model Based on Integrated Microsensor Measurements,” Proc. 25th IEEE/CPMT Intl. Electronics Manufacturing Technology Symposium IEMT, pp. 108–114, 1999.Google Scholar
  10. 10.
    Y. R. Jeng, J. H. Horng, “A Microcontact Approach for Ultrasonic Wire Bonding in Microelectronics,” Journal of Tribology, 123, pp. 725–731, 2001.CrossRefGoogle Scholar
  11. 11.
    _, “ANSYS Theory Reference,” ANSYS Release 6.0,, 2002.Google Scholar
  12. 12.
    J. Lubliner, “Plasticity Theory,” Macmillan Publishing Company, New York, 1990.Google Scholar
  13. 13.
    Z. Zhong, K. S. Goh, “Analysis and Experiments of Ball Deformation for Ultra-Fine-Pitch Wire Bonding,” Journal of Electronics Manufacturing, 10, No. 4, 2000.Google Scholar
  14. 14.
    W. Budweiser, “Untersuchung des Thermosonic Ballbondverfahrens,” (in German), Ph.D. Thesis, Technical Univ. Berlin, Berlin, 1993.Google Scholar
  15. 15.
    Y. Takahashi, M. Inoue, K. Inoue, “Numerical Analysis of Fine Lead Bonding, Effect of Pad Thickness on Interfacial Deformation,” IEEE Transactions on Components and Packaging Technology, 22, No. 2, 1999.Google Scholar
  16. 16.
    D. S. Liu, Y. C. Chao, C. H. Wang, “Study of Wire Bonding Looping Formation in the Electronic Packaging Process Using the Three-Dimensional Finite Element Method,” Finite Elements in Alanlysis and Design, 40, pp. 263–286, 2004.Google Scholar
  17. 17.
    D. Tabor, “The Hardness of Metals,” Clarendon Press, Oxford, 1951.Google Scholar
  18. 18.
    D. Stone, S. Ruoff, W. LaFontaine, H. Wilson, S. P. Hannula, C. Y. Li, “The Use of Indentation Techniques for Characterizing Wire Bonding Materials,” 36th Electronic Components Conference Proc., pp. 318–323, 1986.Google Scholar
  19. 19.
    I. Kovács, G. Vörös, “ On the Mathematical Description of the Tensile Stress-Strain Curves of Polycrystalline Face Centred Cubic Metals,” International Journal of Plasticity, 12, No. 1, pp. 35–43, 1996.Google Scholar
  20. 20.
    J. Seuntjens, “Gold Bonding Wire Alloys,” Scholar
  21. 21.
    E. Grüneisen, Ann. Phys., 25, No. 4, pp. 825, 1908.Google Scholar
  22. 22.
    K. Hausmann, “Kurzzeitkristallisation und mechanische Eigenschaften von Feinstdrähten aus Gold und Kupfer,” (in German), Ph.D. Thesis, No. 702, EPF Lausanne, Lausanne, 1987.Google Scholar
  23. 23.
    S. P. Hannula, J. Wanagel, C. Y. Li, “Evaluation of Mechanical Properties of Thin Wires for Electrical Interconnections,” IEEE Transactions on Compnents, Hybrids, and Manufacturing Technology, 6, No. 4, pp. 494–502, 1983.Google Scholar
  24. 24.
    F. Blaha, B. Langenecker, “Elongation of Zinc Monocrystals Under Ultrasonic Action,” Die Naturwissenschaften, 42, No. 20, pp. 556, 1955.CrossRefGoogle Scholar
  25. 25.
    J. Herbertz, “Untersuchung über die plastische Verformung von Metallan unter Einwirkung von Ultraschall,” (in German), habilitation, Gerhard Mercator Univ. Duisburg, Duisburg, 1979.Google Scholar
  26. 26.
    K. D. Lang, F. Osterwald, B. Schilde, H. Reichl, “Measurement of Ultrasonic Behavior During Wire Bonding-a Contribution to Quality Assurance in Chip on Board Technology,” Proceedings Semicon West’ 98, pp. F1–F9, 1998.Google Scholar
  27. 27.
    J. Mattmüller, “Model for Ball Deformation During Ultrasonic Wire Bonding,” Diploma Thesis, Physical Electronics Laboratory, ETH Zurich, 2002.Google Scholar
  28. 28.
    S. W. Or, H. L. W. Chan, V. C. Lo, C. W. Yuen, “Sensors for Automatic Process Control of Wire Bonding,” Proc. 10th IEEE International Symposium on Applications of Ferroelectrics, 2, pp. 991–994, 1996.Google Scholar
  29. 29.
    A. Carrass, V. P. Jaecklin, “Analytical Methods to Characterize the Interconnection Quality of Gold Ball Bonds,” cn]2nd European Conference on Electronic Packaging Technology (EuPac’ 96), DVS Berichte, 173, pp. 135–139, 1996.Google Scholar
  30. 30.
    S. W. Or, H. L. W. Chan, V. C. Lo, C. W. Yuen, “Ultrasonic Wire-Bond Quality Monitoring Using Piezoelectric Sensor,” Sensors and Actuators, A65, pp. 69–75, 1998.Google Scholar
  31. 31.
    J. H. Cusick, A. E. Brown, A. S. Hamamoto, J. L. S. Bellin, “Ultrasonic Bond Monitor,” US patent application publication No. 3890831, 1975.Google Scholar
  32. 32.
    J. Medding, M. Mayer, “In Situ Ball Bond Shear Measurement Using Wire Bonder Bondhead,” Proc. 25th IEEE/CPMT Intl. Electronics Manufacturing Technology Symposium IEMT, SEMICON West, 2003.Google Scholar
  33. 33.
    J. Schwizer, M. Mayer, O. Brand, H. Baltes, “In Situ Ultrasonic Stress Microsensor for Second Bond Characterization,” Proc. International Symposium on Microelectronics IMAPS, pp. 338–343, 2001.Google Scholar
  34. 34.
    P. Palaniappan, D. F. Baldwin, “In Process Stress Analysis of Flip-Chip Assemblies During Underfill Cure,” Microelectronics Reliability, 40, pp. 1181–1190, 2000.CrossRefGoogle Scholar
  35. 35.
    J. C. Suhling, R. W. Johnson, A. K. M. Mian, K. Rahim, Y. Zou, S. Ragam, M. Palmer, C. D. Ellis, R. C. Jaeger, “Measurement of Backside Flip Chip Die Stresses Using Piezoresistive Test Die,” Proc. International Society for Optical Engineering, pp. 298–303, 1999.Google Scholar
  36. 36.
    J. Schwizer, W. H. Song, M. Mayer, O. Brand, H. Baltes, “Packaging Test Chip for Flip-Chip and Wire Bonding Process Characterization,” Proc. Transducers’ 03, pp. 440–443, 2003.Google Scholar
  37. 37.
    S. Wiese, “Experimentelle Intersuchungen an SnPb37 Flip-Chip-Lotkontakten zur Bestimmung werkst off mechanischer Modelle für die FEM-Simulation,” (in German), VDI, Düsseldorf, 2000.Google Scholar
  38. 38.
    P. M. Hall, “Forces, Moments, and Displacements During Thermal Chamber Cycling of Leadless Ceramic Chip Carriers Soldered to Printed Boards,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 7, No. 4, pp. 314–326, 1984.CrossRefGoogle Scholar
  39. 39.
    J. H. Lau, “Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies,” McGraw-Hill, pp. 128, 1997.Google Scholar
  40. 40.
    L. K. Cheah, Y. M. Tan, J. Wei, C. K. Wong, “Gold to Gold Thermosonic Flip-Chip Bonding,” Proc.2001HD International Conference on High Density Interconnect and Systems Packaging, 4428, pp. 165–170, 2001.Google Scholar
  41. 41.
    K. F. Reinhart, M. Illing, “Automotive Sensor Market,” Sensors Update, 12, pp. 213–230, Wiley-VCH, Weinheim, 2003.Google Scholar
  42. 42.
    J. Bernstein, “An Overview of MEMS Inertial Sensing Technology,” Sensors, 20, No. 2, pp. 14–21, 2003.Google Scholar
  43. 43.
    H. H. Bau, N. F. deRooij, B. Kloeck, “Mechanical Sensors,” Sensors, 7, VCH, Weinheim, 1994.Google Scholar
  44. 44.
    N. Maluf, “An Introduction to Microelectromechanical Systems Engineering,” Artech House, Boston, 2000.Google Scholar
  45. 45.
    Y. Saitoh, K. Kato, M. Shinogi, “Semiconductor Acceleration Sensor,” US patent application publication No. 6158283, December 12, 2000.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations