Stress Field Contact Zone Sensor Element Sensor Design Wheatstone Bridge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. F. Nye, “Physical Properties of Crystals,” Oxford University Press, Oxford, 1957.Google Scholar
  2. 2.
    T. Toriyama, S. Sugiyama, “Analysis of Piezoresistance in p-Type Silicon for Mechanical Sensors,” Journal of Microelectromechanical Systems, 11, No. 5, pp. 598–604, 2002.Google Scholar
  3. 3.
    J. C. Suhling, R. C. Jaeger, “Silicon Piezoresistive Stress Sensors and Their Application in Electronic Packaging,” IEEE Sensors Journal, 1, No. 1, pp. 14–29, 2001.CrossRefGoogle Scholar
  4. 4.
    A. Nathan, H. Baltes, “Microtransducer CAD, Physical and Computional Aspects,” Springer, Vienna, 1999.Google Scholar
  5. 5.
    -, “X-CMOS 0.8, Modular Mixed Signal Technology,” Datasheet, X-FAB Semiconductor Foundries AG, 2002.Google Scholar
  6. 6.
    O. N. Tufte, E. L. Stelzer, “Piezoresistive Properties of Silicon Diffused Layers,” Journal of Applied Physics, 34, No. 2, pp. 313–317, 1963.CrossRefGoogle Scholar
  7. 7.
    Y. Kanda, “A Graphical Representation of the Piezoresistance Coefficients in Silicon,” IEEE Transactions on Electron Devices, 29, No. 1, pp. 64–70, 1982.Google Scholar
  8. 8.
    U. Schiller, “Thermomechanical Offset in Integrated Hall Plates,” Diploma Thesis, IMTEK, University of Freiburg, Freiburg, 2001.Google Scholar
  9. 9.
    B. L. Lwo, C. H. Kao, T. S. Chen, Y. S. Chen, “On the Study of Piezoresistive Stress Sensors for Microelectronic Packaging,” Journal of Electronic Packaging, 124, pp. 22–26, 2002.Google Scholar
  10. 10.
    B. J. Lwo, T. S. Chen, C. H. Kao, Y. L. Lin, “In-Plane Packaging Stress Measurement Through Piezoresistive Sensors,” Journal of Electronic Packaging, 124, pp. 115–121, 2002.Google Scholar
  11. 11.
    W. Pietrenko, “Einfluss von Temperatur und Störstellenkonzentration auf den Piezowiderstandseffekt in n-Silizium,” (in German), Physica Status Solidi, A, No. 41, pp. 197–205, 1977.Google Scholar
  12. 12.
    S. F. Chu, “Piezoresistive Properties of Boron and Phosphorous Implanted Layers in Silicon,” Ph.D. Thesis, Case Western Reserve University, 1978.Google Scholar
  13. 13.
    M. Mayer, “Microelectronic Bonding Process Monitoring by Integrated Sensors,” Ph.D. Thesis, No. 13685, ETH Zurich, Zurich, 2000.Google Scholar
  14. 14.
    S. A. Liu, H. L. Tzo, “A novel six-component force sensor of good measurement isotropy and sensitivities,” Sensors and Actuators A, 100, pp. 223–230, 2002.CrossRefGoogle Scholar
  15. 15.
    V. I. Fabrikant, “Applications of Potential Theory in Mechanics,” Kluwer Academic Publishers, Dordrecht, 1989.Google Scholar
  16. 16.
    J. Rosen, “Symmetry in Science,” Springer, New York, 1995.Google Scholar
  17. 17.
    M. Hizukuri, T. Asano, “Measurement of Dynamic Strain During Ultrasonic Au Bump Formation on Si Chip,” Japanese Journal of Applied Physics, Part 1 (Regular Papers, Short Notes & Review Papers), 39, No. 4B, pp. 2478–2482, 2000.Google Scholar
  18. 18.
    T. Ikeda, N. Miyazaki, K. Kudo, K. Arita, H. Yakiyama, “Failure Estimation of Semiconductor Chip During Wire Bonding Process,” Journal of Electronic Packaging, 121, pp. 85–91, 1999.Google Scholar
  19. 19.
    A. C. Fischer-Cripps, “Introduction to Contact Mechanics,” Springer, New York, 2000.Google Scholar
  20. 20.
    Y. Takahashi, S. Shibamoto, K. Inoue, “Numerical Analysis of the Interfacial Contact Process in Wire Thermocompression Bonding,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, 19, No. 2, pp. 213–223, 1996.CrossRefGoogle Scholar
  21. 21.
    I. C. Noyan, “Plastic Deformation of Solid Spheres,” Philosophical Magazine A, 57, No. 1, pp. 127–141, 1988.Google Scholar
  22. 22.
    W. Budweiser, “Untersuchung des Thermosonic Ballbondverfahrens,” (in German), Ph.D. Thesis, Technical Univ. Berlin, Berlin, 1993.Google Scholar
  23. 23.
    J. Schwizer, M. Mayer, D. Bolliger, O. Paul, H. Baltes, “Thermosonic Ball Bonding: Friction Model Based on Integrated Microsensor Measurements,” Proc. 25th IEEE/CPMT Intl. Electronics Manufacturing Technology Symposium IEMT, pp. 108–114, 1999.Google Scholar
  24. 24.
    K. L. Johnson, “Contact Mechanics,” Cambridge University Press, Cambridge, pp. 70–74, 1985.Google Scholar
  25. 25.
    L. D. Landau, E. M. Lifschitz, “Theory of Elasticity,” Pergamon Press, London, 1959.Google Scholar
  26. 26.
    J. R. Barber, “Elasticity,” Kluwer Academic Publishers, Dordrecht, 1992.Google Scholar
  27. 27.
    G. M. Hamilton, L. E. Goodman, “The Stress Field Created by a Circular Sliding Contact,” Trans. ASME, Journal of Applied Mechanics, 33, pp. 371–376, 1966.Google Scholar
  28. 28.
    O. Madelung, M. Schulz, H. Weiss, “Landolt-Börnstein,” Semiconductors, 17, Berlin, 1982.Google Scholar
  29. 29.
    A. Schroth, “Modelle für Balken und Platten in der Mikromechanik,” Dresden University Press, Dresden, 1996.Google Scholar
  30. 30.
    V. Ziebart, “Mechanical Properties of CMOS Thin Films,” Ph.D. Thesis, No. 13457, ETH Zurich, Zurich, 1999.Google Scholar
  31. 31.
    J. H. Lau, “Thermal Stress and Strain in Microelectronics Packaging,” Van Nostrand Reinhold, New York, 1993.Google Scholar
  32. 32.
    D. S. Gardner, P. A. Flinn, “Mechanical Stress as a Function of Temperature in Aluminum Films,” IEEE Transactions on Electron Devices, 35, No. 12, pp. 2160–2169, 1988.CrossRefGoogle Scholar
  33. 33.
    A. Carrass, V. P. Jaecklin, “Analytical Methods to Characterise the Interconnection Quality of Gold Ball Bonds,” ] Proc. 2nd Europ. Conf. Electr. Packaging Technol. EuPac’96, pp. 135–139, 1996.Google Scholar
  34. 34.
    M. L. Minges, “Packaging,” Electronic Materials Handbook, 1, ASM International, Materials Park, pp. 534ff, 1989.Google Scholar
  35. 35.
    M. Mayer, J. Schwizer, O. Paul, H. Baltes, “In-situ Ultrasonic Stress Measurement During Ball Bonding using Integrated Piezoresistive Microsensors,” Proc. Intersociety Electron. Pack. Conf. (InterPACK99), pp. 973–978, 1999.Google Scholar
  36. 36.
    J. Schwizer, M. Mayer, O. Brand, H. Baltes, “Analysis of Ultrasonic Wire Bonding by In situ Piezoresistive Microsensors,” Proc. Transducers’ 01/Eurosensors XV, pp. 1426–1429, 2001.Google Scholar
  37. 37.
    J. Schwizer, M. Mayer, O. Brand, H. Baltes, “In Situ Ultrasonic Stress Microsensor for Second Bond Characterization,” Proc. International Symposium on Microelectronics IMAPS, pp. 338–343, 2001.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations