Solder Ball Bond Force Chip Surface Ball Bond Face Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Mayer, “Microelectronic Bonding Process Monitoring by Integrated Sensors,” Ph.D. Thesis, No. 13685, ETH Zurich, Zurich, 2000.Google Scholar
  2. 2.
    R. van Gestel, “Reliability Related Research on Plastic IC-Packages: A Test Chip Approach,” Ph.D. Thesis, Delft University Press, 1993.Google Scholar
  3. 3.
    J.N. Sweet, “Integrated Test Chips Improve IC Assembly” IEEE Circuits and Devices Magazine, 6, pp. 39–45, 1990.CrossRefGoogle Scholar
  4. 4.
    S. J. Ham, S. B. Lee, “Measurement of Creep and Relaxation Behaviors of Wafer-Level CSP Assembly Using Moiré Interferometry,” Transactions of the ASME, 125, pp. 282–288, 2003.Google Scholar
  5. 5.
    D. A. Bittle, J. C. Suhling, R. E. Beaty, R. C. Jaeger, R. W. Johnson, “Piezoresistive Stress Sensors for Structural Analysis of Electronic Packages,” Journal of Electronic Packaging, 113, pp. 203–215, 1991.Google Scholar
  6. 6.
    J. F. Creemer, “The Effect of Mechanical Stress on Bipolar Transistor Characteristics,” Ph.D. Thesis, Techn. Univ. Delft, Delft, 2002.Google Scholar
  7. 7.
    A. T. Bradley, R. C. Jaeger, J. C. Suhling, K. J. O’Connor, “Piezoresistive Characteristics of Short-Channel MOSFETs on (100) Silicon,” IEEE Trans. on Electron Devices, 48, No. 9, pp. 2009–2015, 2001.CrossRefGoogle Scholar
  8. 8.
    M. Doelle, P. Ruther, O. Paul, “A Novel Stress Sensor Based on the Transverse Pseudo-Hall Effect of MOSFETS,” IEEE 16th Annual International Conference on MEMS, pp. 490–493, 2003.Google Scholar
  9. 9.
    Y. Zou, J. C. Suhling, R. C. Jaeger, S. T. Lin, J. T. Benoit, R. R. Grzybowski, “Die Surface Stress Variation During Thermal Cycling and Thermal Aging Reliability Tests,” 49th Electronic Components and Technology Conference, pp. 1249–1260, 1999.Google Scholar
  10. 10.
    Y. Zou, J. C. Suhling, R. W. Johnson, R. C. Jaeger, A. K. M. Mian, “In-situ Stress State Measurements During Chip-on-Board Assembly,” IEEE Transactions on Electronics Packaging Manufacturing, 22, No. 1, pp. 38–52, 1999.CrossRefGoogle Scholar
  11. 11.
    P. Palaniappan, D. F. Baldwin, “In Process Stress Analysis of Flip-Chip Assemblies During Underfill Cure,” Microelectronics Reliability, 40, pp. 1181–1190, 2000.CrossRefGoogle Scholar
  12. 12.
    J. Zhang, H. Ding, D. F. Baldwin, I. C. Ume, “Characterization of In-Process Substrate Warpage of Underfilled Flip Chip Assembly,” IEEE/CPMT/SEMI 28th Int’1 Electronics Manufacturing Technology Symposium, pp. 291–297, 2003.Google Scholar
  13. 13.
    M. Mayer, J. Schwizer, O. Paul, H. Baltes, “In-situ Ultrasonic Stress Measurement During Ball Bonding using Integrated Piezoresistive Microsensors,” Proc. Intersociety Electron. Pack. Conf. (InterPACK99), pp. 973–978, 1999.Google Scholar
  14. 14.
    D. Manic, A. P. Friedrich, Y. Haddab, R. S. Popovic, “Influence of Assembly Procedure on IC Parameters,” Proc. 21st International Conference on Microelectronics, 2, pp. 637–640, 1997.Google Scholar
  15. 15.
    M. Doelle, C. Peters, P. Gieschke, P. Ruther, O. Paul, “Two-Dimensional High Density Piezo-FET Stress Sensor Arrays for In-Situ Monitoring of Wire Bonding Processes,” Proc. 17th IEEE International Conference on Micro Electro Mechanical Systems (MEMS’04), pp. 829–832, 2004.Google Scholar
  16. 16.
    M. Hizukuri, Y. Wada, N. Watanabe, T. Asano, “Real Time Measurement of the Strain Generated on Substrate during Ultrasonic Flip Chip Bonding,” 6th Symposium on Microjoining and Assembly Technology in Electronics, 3-4 February, Yokohama, pp. 169–174, 2000.Google Scholar
  17. 17.
    M. Hizukuri, T. Asano, “Measurement of Dynamic Strain During Ultrasonic Au Bump Formation on Si Chip,” Japanese Journal of Applied Physics, Part 1 (Regular Papers, Short Notes & Review Papers), 39, No. 4B, pp. 2478–2482, 2000.Google Scholar
  18. 18.
    M. Mayer, Z. Stoessel, D. Bolliger, O. Paul, “Process and Chip for Calibrating a Wire Bonder,” EP patent application publication No. 0953398A1, November 3, 1999.Google Scholar
  19. 19.
    G. Harman, “Wire Bonding in Microelectronics,” 2nd Ed., McGraw Hill, New York, 1997.Google Scholar
  20. 20.
    M. Barp, D. Vischer, “Achieving a World Record in Ultra High Speed Wire Bonding through Novel Technology,” Proc. Semicon West’02, 2002.Google Scholar
  21. 21.
    N. Onda, Z. Stössel, A. Dommann, J. Ramm, “DC-Hydrogen Plasma Cleaning: A Novel Process for IC-Packaging,” Proc. Semicon/Package Materials, pp. D1–D10, 1997.Google Scholar
  22. 22.
    D. S. Liu, Y. C. Chao, C. H. Wang, “Study of Wire Bonding Looping Formation in the Electronic Packaging Process Using the Three-Dimensional Finite Element Method,” Finite Elements in Alanlysis and Design, 40, pp. 263–286, 2004.Google Scholar
  23. 23.
    ASTM Standard No. F1269-89, “Test Methods of Destructive Shear Testing of Ball Bonds,” 1990.Google Scholar
  24. 24.
    F. Farassat, “Wire Bonding Ultrasonic Control System Responsive to Wire Deformation,” US patent application publication No. 5314105, May 24, 1994.Google Scholar
  25. 25.
    F. Farassat, “Entwicklung und Erprobung eines Regelsystems zur Verbesserung der Verbindungsqualität beim Ultraschallbonden,” (in German), Ph.D. Thesis, Technical University Berlin, Berlin, 1997.Google Scholar
  26. 26.
    A. Carrass, V. P. Jaecklin, “Analytical Methods to Characterize the Interconnection Quality of Gold Ball Bonds,” 2nd European Conference on Electronic Packaging Technology (EuPac’ 96), DVS Berichte, 173, pp. 135–139, 1996.Google Scholar
  27. 27.
    R. Pufall, “Automatic Process Control of Wire Bonding,” Proc. Electronic Components & Technology Conference, 43, pp. 159–162, 1993.Google Scholar
  28. 28.
    J. H. Cusick, A. E. Brown, A. S. Hamamoto, J. L. S. Bellin, “Ultrasonic Bond Monitor,” US patent application publication No. 3890831, June 24, 1975.Google Scholar
  29. 29.
    K. U. von Raben, “Controlling Relevant Bonding Parameters of Modern Bonders,” Proc. Electronic Components Conference, 38, pp. 558–563, 1988.Google Scholar
  30. 30.
    S. W. Or, H. L. W. Chan, V. C. Lo, C. W. Yuen, “Ultrasonic Wire-Bond Quality Monitoring Using Piezoelectric Sensor,” Sensors and Actuators, A65, pp. 69–75, 1998.Google Scholar
  31. 31.
    W. L. Loofbourrow, “Capacitive Microphone Tuning of Ultrasonic/Thermosonic Bonders,” Proc. Semiconductor Processing, pp. 472–484, 1984.Google Scholar
  32. 32.
    K. D. Lang, F. Osterwald, B. Schilde, H. Reichl, “Measurement of Ultrasonic Behavior During Wire Bonding-a Contribution to Quality Assurance in Chip on Board Technology,” Proc. Semicon West’ 98, pp. F1–F9, 1998.Google Scholar
  33. 33.
    A. Schneuwly, P. Gröning, L. Schlapbach, G. Müller, “Bondability Analysis of Bond Pads by Thermoelectric Temperature Measurements,” Journal of Electronic Materials, 27, No. 11, pp. 1254–1261, 1998.Google Scholar
  34. 34.
    M. Mayer, O. Paul, D. Bolliger, H. Baltes, “Integrated Temperature Microsensors for Characterization and Optimization of Thermosonic Ball Bonding Process,” Proc. Electronic Components and Technology Conference, pp. 463–468, 1999.Google Scholar
  35. 35.
    O. E. Gibson, “Bond Signature Analyzer,” US patent application publication 4998664, March 12, 1991.Google Scholar
  36. 36.
    J. Chen, “Real-Time Ultrasonic Testing of Quality of Wire Bonding,” Insight Non-Destructive Testing and Condition Monitoring, 44, No. 7, pp. 443–445, 2002.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations