Advertisement

Activins and inhibins: Physiological roles, signaling mechanisms and regulation

  • Peter C. Gray
  • Louise M. Bilezikjian
  • Craig A. Harrison
  • Ezra Wiater
  • Wylie Vale
Conference paper
Part of the Research and Perspectives in Endocrine Interactions book series (RPEI)

Keywords

Activin Receptor Activin Signaling Porcine Follicular Fluid Follicle Stimulate Hormone Production TGFbeta Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham EJ, Faught WJ, Frawley LS (1998) Transforming growth factor betal is a paracrine inhibitor of prolactin gene expression. Endocrinology 139:5174–5181CrossRefPubMedGoogle Scholar
  2. Adkins HB, Bianco C, Schiffer SG, Rayhorn P, Zafari M, Cheung AE, Orozco O, Olson D, De Luca A, Chen LL, Miatkowski K, Benjamin C, Normanno N, Williams KP, Jarpe M, LePage D, Salomon D, Sanicola M (2003) Antibodyblockade of the Cripto CFC domain suppresses tumor cell growth in vivo. J Clin Invest 112:575–587CrossRefPubMedGoogle Scholar
  3. Alzheimer C, Werner S (2002) Fibroblast growth factors and neuroprotection. Adv Exp Med Biol 513:335–351PubMedGoogle Scholar
  4. Andreasson K, Worley PF (1995) Induction of beta-A activin expression by synaptic activity and during neocortical development. Neurosci 69:781–796CrossRefGoogle Scholar
  5. Archer SJ, Bax A, Roberts AB, Sporn MB, Ogawa Y, Piez KA, Weatherbee JA, Tsang M, Lucas R, Zheng B-L, Wenker J, Torchia DA (1993) Transforming growth factor β1: secondary structure as determined by heteronuclear magnetic resonance spectroscopy. Biochem 32:1164–1171CrossRefGoogle Scholar
  6. Asashima M, Nakano H, Shimada K, Kinoshita K, Ishii K, Shibai H, Ueno N (1990) Mesodermal induction in early amphibian embryos by activin A. Roux’s Arch Dev Biol 198:330–335CrossRefGoogle Scholar
  7. Attisano L, Wrana JL, Cheifetz S, Massague J (1992) Novel activin receptors: distinct genes and alternative mRNA splicing generate a repertoire of serine/threonine kinase receptors. Cell 68:97–108CrossRefPubMedGoogle Scholar
  8. Attisano L, Wrana JL, Montalvo E, Massague J (1996) Activation of signalling by the activin receptor complex. Mol Cell Biol 16:1066–1073PubMedGoogle Scholar
  9. Bassing CH, Yingling JM, Howe DJ, Wang T, He WW, Gustafson ML, Shah P, Donahoe PK, Wang X-F (1994) A transforming growth factor-β type I receptor that signals to activate gene expression. Science 263:87–89PubMedGoogle Scholar
  10. Beer HD, Gassmann MG, Munz B, Steiling H, Engelhardt F, Bleuel K, Werner S (2000) Expression and function of keratinocyte growth factor and activin in skin morphogenesis and cutaneous wound repair. J Invest Dermatol Symp Proc 5:34–39.CrossRefGoogle Scholar
  11. Bernard DJ, Chapman SC, Woodruff TK (2001) Mechanisms of inhibin signal transduction. Recent Prog Horm Res 56:417–450.CrossRefPubMedGoogle Scholar
  12. Bernard DJ, Burns KH, Haupt B, Matzuk MM, Woodruff TK (2003) Normal reproductive function in InhBP/p120-deficient mice. Mol Cell Biol 23:4882–4891CrossRefPubMedGoogle Scholar
  13. Bianco C, Adkins HB, Wechselberger C, Seno M, Normanno N, De Luca A, Sun Y, Khan N, Kenney N, Ebert A, Williams KP, Sanicola M, Salomon DS (2002) Cripto-1 activates nodal-and ALK4-dependent and-independent signaling pathways in mammary epithelial Cells. Mol Cell Biol 22:2586–2597CrossRefPubMedGoogle Scholar
  14. Bianco C, Kannan S, De Santis M, Seno M, Tang CK, Martinez-Lacaci I, Kim N, Wallace-Jones B, Lippman ME, Ebert AD, Wechselberger C, Salomon DS (1999) Cripto-1 indirectly stimulates the tyrosine phosphorylation of erb B-4 through a novel receptor. J Biol Chem 274:8624–8629CrossRefPubMedGoogle Scholar
  15. Bianco C, Normanno N, De Luca A, Maiello MR, Wechselberger C, Sun Y, Khan N, Adkins H, Sanicola M, Vonderhaar B, Cohen B, Seno M, Salomon D (2002) Detection and localization of Cripto-1 binding in mouse mammary epithelial cells and in the mouse mammary gland using an immunoglobulin-cripto-1 fusion protein. J Cell Physiol 190:74–82CrossRefPubMedGoogle Scholar
  16. Bilezikjian LM, Corrigan AZ, Vale WW (1990) Activin-A modulates growth hormone secretion from cultures of rat anterior pituitary cells. Endocrinology 126:2369–2376PubMedGoogle Scholar
  17. Bilezikjian LM, Blount AL, Campen CA, Gonzalez-Manchon C, Vale WW (1991) Activin-A inhibits proopiomelanocortin messenger RNA accumulation and adrenocorticotropin secretion of AtT20 cells. Mol Endocrinol 5:1389–1395PubMedGoogle Scholar
  18. Bilezikjian LM, Vale WW (1992) Local extragonadal roles of activins. Trends Endocrinol Metab 3:218–223CrossRefGoogle Scholar
  19. Bilezikjian LM, Corrigan AZ, Blount AL, Chen Y, Vale WW (2001) Regulation and actions of smad7 in the modulation of activin, inhibin and TGFβ signaling in anterior pituitary cells. Endocrinology 142:1065–1072CrossRefPubMedGoogle Scholar
  20. Billestrup N, Gonzalez-Manchon C, Potter E, Vale WW (1990) Inhibition of somatotroph growth and GH biosynthesis by activin in vitro. Mol Endocrinol 4:356–362PubMedGoogle Scholar
  21. Brosh N, Sternberg D, Honigwachs-Sha’anani J, Lee BC, Shav-Tal Y, Tzehoval E, Shulman LM, Toledo J, Hacham Y, Carmi P, Jiang W, Sasse J, Horn F, Burstein Y, Zipori D (1995) The plasmacytoma growth inhibitor restrictin-P is an antagonist of interleukin 6 and interleukin 11. J Biol Chem 270:29594–29600CrossRefPubMedGoogle Scholar
  22. Brown CW, Houston-Hawkins DE, Woodruff TK, Matzuk MM (2000) Insertion of Inhbb into the Inhba locus rescues the Inhba-null phenotype and reveals new activin functions. Nat Genet 25:453–457CrossRefPubMedGoogle Scholar
  23. Broxmeyer HE, Lu L, Cooper S, Schwall R, Mason AJ, Nikolics K (1988) Selective and indirect modulation of human multipotential and erythroid hematopoietc progenitor cell proliferation by recombinant human activin and inhibin. Proc Natl Acad Sci USA 85:9052–9056PubMedGoogle Scholar
  24. Burns G, Sarkar DK (1993) Transforming growth factor β1-like immunoreactivity in the pituitary gland of the rat: effect of estrogen. Endocrinology 133:1444–1449CrossRefPubMedGoogle Scholar
  25. Calogero AE, Burrello N, Ossino AM, Polosa P, D’Agata R (1998) Activin-A stimulates hypothalamic gonadotropin-releasing hormone release by the explanted male rat hypothalamus: interaction with inhibin and androgens. J Endocrinol 156:269–274CrossRefPubMedGoogle Scholar
  26. Cameron VA, Nishimura E, Mathews LS, Lewis KA, Sawchenko PE, Vale WW (1994) Hybridization histochemical localization of activin receptor subtypes in rat brain, pituitary, ovary and testis. Endocrinology 134:799–808CrossRefPubMedGoogle Scholar
  27. Carroll RS, Corrigan AZ, Gharib SD, Vale WW, Chin WW (1989) Inhibin, activin and follistatin: regulation of follicle-stimulating hormone messenger ribonucleic acid levels. Mol Endocrinol 3:1969–1976PubMedGoogle Scholar
  28. Chang H, Brown CW, Matzuk MM (2002) Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocr Rev 23:787–823CrossRefPubMedGoogle Scholar
  29. Chapman SC, Bernard DJ, Jelen J, Woodruff TK (2002) Properties of inhibin binding to betaglycan, InhBP/p120 and the activin type II receptors. Mol Cell Endocrinol 196:79–93CrossRefPubMedGoogle Scholar
  30. Chen CR, Kang Y, Siegel PM, Massague J (2002) E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to c-myc repression. Cell 110:19–32CrossRefPubMedGoogle Scholar
  31. Chen YG, Lui HM, Lin SL, Lee JM, Ying SY (2002) Regulation of cell proliferation, apoptosis, and carcinogenesis by activin. Exp Biol Med (Maywood) 227:75–87Google Scholar
  32. Cheng SK, Olale F, Bennett JT, Brivanlou AH, Schier AF (2003) EGF-CFC proteins are essential coreceptors for the TGF-beta signals Vg1 and GDF1. Genes Dev 17:31–36CrossRefPubMedGoogle Scholar
  33. Cheng SK, Olale F, Brivanlou AH, Schier AF (2004) Lefty Blocks a Subset of TGFbeta Signals by Antagonizing EGF-CFC Coreceptors. PLoS Biol 2:E30CrossRefPubMedGoogle Scholar
  34. Chong H, Pangas SA, Bernard DJ, Wang E, Gitch J, Chen W, Draper LB, Cox ET, Woodruff TK (2000) Structure and expression of a membrane component of the inhibin receptor system [see comments]. Endocrinology 141:2600–2607CrossRefPubMedGoogle Scholar
  35. Ciardiello F, Dono R, Kim N, Persico MG, Salomon DS (1991) Expression of cripto, a novel gene of the epidermal growth factor gene family, leads to in vitro transformation of a normal mouse mammary epithelial cell line. Cancer Res 51:1051–1054PubMedGoogle Scholar
  36. Ciccodicola A, Dono R, Obici S, Simeone A, Zollo M, Persico MG (1989) Molecular characterization of a gene of the ‘EGF family’ expressed in undifferentiated human NTERA2 teratocarcinoma cells. Embo J 8:1987–1991PubMedGoogle Scholar
  37. Conlon FL, Lyons KM, Takaesu N, Barth KS, Kispert A, Herrmann B, Robertson EJ (1994) A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 120:1919–1928PubMedGoogle Scholar
  38. Cordenonsi M, Dupont S, Maretto S, Insinga A, Imbriano C, Piccolo S (2003) Links between tumor suppressors. p53 is required for TGF-beta gene responses by cooperating with Smads. Cell 113:301–314CrossRefPubMedGoogle Scholar
  39. Corrigan AZ, Bilezikjian LM, Carroll RS, Bald LN, Schmelzer CH, Fendly BM, Mason AJ, Chin WW, Schwall RH, Vale WW (1991) Evidence for an autocrine role of activin B within rat anterior pituitary cultures. Endocrinology 128:1682–1684PubMedGoogle Scholar
  40. Coulombe JN, Schwall R, Parent AS, Eckenstein FP, Nishi R (1993) Induction of somatostatin immunoreactivity in cultured ciliary gangion neurons by activin in choroid cell-conditioned medium. Neuron 10:899–906CrossRefPubMedGoogle Scholar
  41. Daadi M, Arcellana-Panlilio MY, Weiss S (1998) Activin co-operates with fibroblast growth factor 2 to regulate tyrosine hydroxylase expression in the basal forebrain ventricular zone progenitors. Neuroscience 86:867–880CrossRefPubMedGoogle Scholar
  42. Daopin S, Piez KA, Ogawa Y, Davies DR (1992) Crystal structure of transforming growth factor-β2: an unusual fold for the superfamily. Science 257:369–373PubMedGoogle Scholar
  43. Darland DC, Link BA, Nishi R (1995) Activin A and follistatin expression in developing targets of ciliary ganglion neurons suggests a role in regulating neurotransmitter phenotype. Neuron 15:857–866CrossRefPubMedGoogle Scholar
  44. Dattatreyamurty B, Roux E, Horbinski C, Kaplan PL, Robak LA, Beck HN, Lein P, Higgins D, Chandrasekaran V (2001) Cerebrospinal fluid contains biologically active bone morphogenetic protein-7. Exp Neurol 172:273–281.CrossRefPubMedGoogle Scholar
  45. De Groot CJ, Montagne L, Barten AD, Sminia P, Van Der Valk P (1999) Expression of transforming growth factor (TGF)-betal,-beta2, and-beta3 isoforms and TGF-beta type I and type II receptors in multiple sclerosis lesions and human adult astrocyte cultures. J Neuropathol Exp Neurol 58:174–187PubMedGoogle Scholar
  46. De Kretser DM, Robertson DM, Risbridger GP, Hedger MP, McLachlan RI, Burger HG, Findlay JK (1988) Inhibin and related peptides. Prog Endocrinol 13–23Google Scholar
  47. DeJong FH (1988) Inhibin. Physiol Rev 68:555–607PubMedGoogle Scholar
  48. DePaolo LV, Bicsak TA, Erickson GF, Shimasaki S, Ling N (1991) Follistatin and activin: a potential intrinsic regulatory system within diverse tissues. Proc Soc Exp Biol Med 198:500–512PubMedGoogle Scholar
  49. Derynck R, Akhurst RJ, Balmain A (2001) TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 29:117–129CrossRefPubMedGoogle Scholar
  50. Ding J, Yang L, Yan YT, Chen A, Desai N, Wynshaw-Boris A, Shen MM (1998) Cripto is required for correct orientation of the anterior-posterior axis in the mouse embryo. Nature 395:702–707CrossRefPubMedGoogle Scholar
  51. Dowling CR, Risbridger GP (2000) The role of inhibins and activins in prostate cancer pathogenesis. Endocr Relat Cancer 7:243–256.CrossRefPubMedGoogle Scholar
  52. Draper LB, Matzuk MM, Roberts V, Cox E, Weiss J, Mather JP, Woodruff TK (1998) Identification of an inhibin receptor in gonadal tumors from inhibin alpha-subunit knockout mice. J Biol Chem 273:398–403CrossRefPubMedGoogle Scholar
  53. Ebner R, Chen R-H, Shum L, Lawler S, Zioncheck TF, Lee A, Lopez AR, Derynck R (1993) Cloning of type I TGF-β receptor and its effect on TGF-β binding to the type II receptor. Science 260:1344–1348PubMedGoogle Scholar
  54. Eppert K, Scherer SW, Ozcelik H, Pirone R, Hoodless P, Kim H, Tsui LC, Bapat B, Gallinger S, Andrulis IL, Thomsen GH, Wrana JL, Attisano L (1996) MADR2 maps to 18q21 and encodes a TGFbeta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 86:543–552CrossRefPubMedGoogle Scholar
  55. Ericson J, Norlin S, Jessell TM, Edlund T (1998) Integrated FGF and BMP signaling controls the progression of progenitor cell differentiation and the emergence of pattern in the embryonic anterior pituitary. Development 125:1005–1015PubMedGoogle Scholar
  56. Esparza-Lopez J, Montiel JL, Vilchis-Landeros M, Okadome T, Miyazono K, Lopez-Casillas F (2001) Ligand binding and functional properties of betaglycan, a co-receptor of the transforming growth factor-{beta} superfamily. Specialized binding sites for transforming growth factor-beta and inhibin A. J Biol Chem 18:14588–14596CrossRefGoogle Scholar
  57. Ethier JF, Farnworth PG, Findlay JK, Ooi GT (2002) Transforming growth factor-beta modulates Inhibin A bioactivity in the LbetaT2 gonadotrope cell line by competing for binding to betaglycan. Mol Endocrinol 16:2754–2763CrossRefPubMedGoogle Scholar
  58. Eto Y, Tsuji T, Takezawa M, Takano S, Yokogawa Y, Shibai H (1987) Purification and characterization of erythroid differentiation factor (EDF) isolated from human leukemia cell line THP-1. Biochem Biophys Res Commun 142:1095–1103CrossRefPubMedGoogle Scholar
  59. Mol Cell 9:133–143.Google Scholar
  60. Feng XH, Zhang Y, Wu RY, Derynck R (1998) The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for smad3 in TGF-beta-induced transcriptional activation. Genes Dev 12:2153–2163PubMedGoogle Scholar
  61. Feng XH, Lin X, Derynck R (2000) Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15(Ink4B) transcription in response to TGF-beta. Embo J 19:5178–5193.CrossRefPubMedGoogle Scholar
  62. Feng XH, Liang YY, Liang M, Zhai W, Lin X (2002) Direct interaction of c-Myc with Smad2 and Smad3 to inhibit TGF-beta-mediated induction of the CDK inhibitor p15(Ink4B) Mol Cell 9:133–143CrossRefPubMedGoogle Scholar
  63. Funaba M, Murata T, Fujimura H, Murata E, Abe M, Torii K (1997) Immunolocalization of type I or type II activin receptors in the rat brain. J Neuroendocrinol 9:105–111CrossRefPubMedGoogle Scholar
  64. Gonzalez-Manchon C, Bilezikjian LM, Corrigan AZ, Mellon PL, Vale WW (1991) Activin-A modulates gonadotropin-releasing hormone secretion from a gonadotropin-releasing hormone-secreting neuronal cell line. Neuroendocrinology 54:373–377PubMedGoogle Scholar
  65. Gray PC, Greenwald J, Blount AL, Kunitake KS, Donaldson CJ, Choe S, Vale W (2000) Identification of a Binding Site on the Type II Activin Receptor for Activin and Inhibin. J Biol Chem 275:3206–3212CrossRefPubMedGoogle Scholar
  66. Gray PC, Harrison CA, Vale W (2003) Cripto forms a complex with activin and type II activin receptors and can block activin signaling. Proc Natl Acad Sci USA 100:5193–5198CrossRefPubMedGoogle Scholar
  67. Greenwald J, Fischer WH, Vale WW, Choe S (1999) Three-finger toxin fold for the extracellular ligand-binding domain of the type II activin receptor serine kinase. Nat Struct Biol 6:18–22CrossRefPubMedGoogle Scholar
  68. Greenwald J, Groppe J, Gray P, Wiater E, Kwiatkowski W, Vale W, Choe S (2003) The BMP7/ ActRII extracellular domain complex provides new insights into the cooperative nature of receptor assembly. Mol Cell 11:605–617CrossRefPubMedGoogle Scholar
  69. Griffith DL, Keck PC, Sampath TK, Rueger DC, Carlson WD (1996) Three-dimensional structure of recombinant human osteogenic protein 1: structural paradigm for the transforming growth factor beta superfamily. Proc Natl Acad Sci U S A 93:878–883CrossRefPubMedGoogle Scholar
  70. Gu Z, Nomura M, Simpson BB, Lei H, Feijen A, van den Eijnden-van Raaij J, Donahoe PK, Li E (1998) The type I activin receptor ActRIB is required for egg cylinder organization and gastrulation in the mouse. Genes Dev 12:844–857PubMedGoogle Scholar
  71. Guo Q, Kumar TR, Woodruff T, Hadsell LA, DeMayo FJ, Matzuk MM (1998) Overexpression of mouse follistatin causes reproductive defects in transgenic mice. Mol Endocrinol 12:96–106CrossRefPubMedGoogle Scholar
  72. Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hruban RH, Kern SE (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271:350–353PubMedGoogle Scholar
  73. Han SU, Kim HT, Seong DH, Kim YS, Park YS, Bang YJ, Yang HK, Kim SJ (2003) Loss of the Smad3 expression increases susceptibility to tumorigenicity in human gastric cancer. Oncogene 23(7): 1333–1341CrossRefGoogle Scholar
  74. Hangoc G, Carow CE, Schwall R, Mason AJ, Broxmeyer HE (1992) Effects invivo of recombinant human inhibin on myelopoiesis in mice. Exp Hematol 20:1243–1246PubMedGoogle Scholar
  75. Harrison CA, Farnworth PG, Chan KL, Stanton PG, Ooi GT, Findlay JK, Robertson DM (2001) Identification of specific inhibin a-binding proteins on mouse leydig (tm3) and sertoli (tm4) cell lines. Endocrinology 142:1393–1402.CrossRefPubMedGoogle Scholar
  76. Harrison CA, Gray PC, Koerber SC, Fischer W, Vale W (2003) Identification of a functional binding site for activin on the type I receptor ALK4. J Biol Chem 278: 21129–21135CrossRefPubMedGoogle Scholar
  77. Hart PJ, Deep S, Taylor AB, Shu Z, Hinck CS, Hinck AP (2002) Crystal structure of the human TbetaR2 ectodomain-TGF-beta3 complex. Nat Struct Biol 9:203–208PubMedGoogle Scholar
  78. Hashimoto M, Kondo S, Sakurai T, Etoh Y, Shibai H, Muramatsu M (1990) Activin/EDF as an inhibitor of neural differentiation. Biochem Biophys Res Commun 173:193–200CrossRefPubMedGoogle Scholar
  79. Hashimoto M, Nakamura T, Inoue S, Kondo T, Yamada R, Eto Y, Sugino H, Muramatsu M (1992) Follistatin is a developmentally regulated cytokine in neural differentiation. J Biol Chem 267:7203–7206PubMedGoogle Scholar
  80. Hawkins RL, Inoue M, Mori M, Torii K (1995) Effect of inhibin, follistatin, or activin infusion into the lateral hypothalamus on operant behavior of rats fed lysine deficient diet. Brain Res 704:1–9CrossRefPubMedGoogle Scholar
  81. Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnell BW, Richardson MA, Topper JN, Gimbrone J, M.A., Wrana JL, Falb D (1997) The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFb signaling. Cell 89:1165–1173CrossRefPubMedGoogle Scholar
  82. Heldin CH, Miyazono K, ten Dijke P (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390:465–471CrossRefPubMedGoogle Scholar
  83. Hempen PM, Zhang L, Bansal RK, Iacobuzio-Donahue CA, Murphy KM, Maitra A, Vogelstein B, Whitehead RH, Markowitz SD, Willson JK, Yeo CJ, Hruban RH, Kern SE (2003) Evidence of selection for clones having genetic inactivation of the activin A type II receptor (ACVR2) gene in gastrointestinal cancers. Cancer Res 63:994–999PubMedGoogle Scholar
  84. Hertan R, Farnworth PG, Fitzsimmons KL, Robertson DM (1999) Identification of high affinity binding sites for inhibin on ovine pituitary cells in culture. Endocrinology 140:6–12CrossRefPubMedGoogle Scholar
  85. Hotten G, Neidhart H, Schneider C, Pohl J (1995) Cloning of a new member of the TGF-beta family: putative new activin beta-C chain. Biochem Biophys Res Commun 206:608–613CrossRefPubMedGoogle Scholar
  86. Hsu DR, Economides AN, Wang X, Eimon PM, Harland RM (1998) The Xenopus dorsalizing factor Gremlin identifies a novel family of secreted proteins that antagonize BMP activities. Mol Cell 1:673–683CrossRefPubMedGoogle Scholar
  87. Hsueh AJW, Bicsak TA, Vaughan J, Tucker E, Rivier J, Vale WW (1987) Heterodimers and homodimers of inhibin subunits have different paracrine action in the modulation of luteinizing hormone-stimulated androgen biosynthesis. Proc Natl Acad Sci USA 84:5082–5086PubMedGoogle Scholar
  88. Hughes PE, Alexi T, Williams CE, Clark RG, Gluckman PD (1999) Administration of recombinant human Activin-A has powerful neurotrophic effects on select striatal phenotypes in the quinolinic acid lesion model of Huntington’s disease. Neuroscience 92:197–209CrossRefPubMedGoogle Scholar
  89. Iemura S, Yamamoto TS, Takagi C, Kobayashi H, Ueno N (1999) Isolation and characterization of bone morphogenetic protein-binding proteins from the early Xenopus embryo. J Biol Chem 274:26843–26849CrossRefPubMedGoogle Scholar
  90. Imamura T, Takase M, Nishihara A, Oeda E, Hanai J, Kawabata M, Miyazono K (1997) Smad6 inhibits signalling by the TGF-beta superfamily. Nature 389:622–626CrossRefPubMedGoogle Scholar
  91. Inokuchi K, Kato A, Hiraia K, Hishinuma F, Inoue M, Ozawa F (1996) Increase in activin beta A mRNA in rat hippocampus during long-term potentiation. FEBS Lett 382:48–52CrossRefPubMedGoogle Scholar
  92. Ishisaki A, Yamato K, Nakao A, Nonaka K, Ohguchi M, ten Dijke P, Nishihara T (1998) Smad7 is an activin-inducible inhibitor of activin-induced growth arrest and apoptosis in mouse B cells. J Biol Chem 273:24293–24296CrossRefPubMedGoogle Scholar
  93. Iwahori Y, Saito H, Torii K, Nishiyama N (1997) Activin exerts a neurotrophic effect on cultured hippocampal neurons. Brain Res 760:52–58CrossRefPubMedGoogle Scholar
  94. Janknecht R, Wells NJ, Hunter T (1998) TGF-beta-stimulated cooperation of Smad proteins with the coactivators CBP/p300. Genes Dev 12:2114–2119PubMedGoogle Scholar
  95. Kang Y, Chen CR, Massague J (2003) A self-enabling TGFbeta response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol Cell 11:915–926CrossRefPubMedGoogle Scholar
  96. Kim J, Johnson K, Chen HJ, Carroll S, Laughon A (1997) Drosophila Mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic. Nature 388:304–308CrossRefPubMedGoogle Scholar
  97. Kimelman D, Griffin KJ (2000) Vertebrate mesendoderm induction and patterning. Curr Opin Genet Dev 10:350–356CrossRefPubMedGoogle Scholar
  98. Kirsch T, Sebald W, Dreyer MK (2000) Crystal structure of the BMP-2-BRIA ectodomain complex. Nat Struct Biol 7:492–496CrossRefPubMedGoogle Scholar
  99. Kjellman C, Olofsson SP, Hansson O, Von Schantz T, Lindvall M, Nilsson I, Salford LG, Sjogren HO, Widegren B (2000) Expression of TGF-beta isoforms, TGF-beta receptors, and SMAD molecules at different stages of human glioma. Int J Cancer 89:251–258CrossRefPubMedGoogle Scholar
  100. Kretzschmar M, Liu F, Hata A, Doody J, Massague J (1997) The TGF-beta family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase. Genes Dev 11:984–995PubMedGoogle Scholar
  101. Krieglstein K, Suter-Crazzolara C, Fischer WH, Unsicker K (1995) TGF-beta superfamily members promote survival of midbrain dopaminergic neurons and protect them against MPP+ toxicity. Embo J 14:736–742PubMedGoogle Scholar
  102. Kubota K, Suzuki M, Yamanouchi K, Takahashi M, Nishihara M (2003) Involvement of activin and inhibin in the regulation of food and water intake in the rat. J Vet Med Sci 65:237–242CrossRefPubMedGoogle Scholar
  103. Labbe E, Silvestri C, Hoodless PA, Wrana JL, Attisano L (1998) Smad2 and Smad3 positively and negatively regulate TGF beta-dependent transcription through the forkhead DNA-binding protein FAST2. Mol Cell 2:109–120CrossRefPubMedGoogle Scholar
  104. Lai M, Sirimanne E, Williams CE, Gluckman PD (1996) Sequential patterns of inhibin subunit gene expression following hypoxic-ischemic injury in the rat brain. Neuroscience 70:1013–1024CrossRefPubMedGoogle Scholar
  105. Lai M, Gluckman P, Dragunow M, Hughes PE (1997) Focal brain injury increases activin betaA mRNA expression in hippocampal neurons. Neuroreport 8:2691–2694CrossRefPubMedGoogle Scholar
  106. Lebrun J-J, Vale WW (1997) Activin and inhibin have antagonistic effects on ligand-dependent heterodimerization of the type I and type II activin receptors and human erythroid differentiation. Mol Cell Biol 17:1682–1691PubMedGoogle Scholar
  107. Lebrun J-J, Takabe K, Chen Y, Vale WW (1999) Roles of pathway-specific and inhibitory Smads in activin receptor signaling. Mol Endocrinol 13:15–23CrossRefPubMedGoogle Scholar
  108. Lee S, Rivier CL (1997) Effect of repeated activin-A treatment on the activity of the hypothalamic-pituitary-gonadal axis of the adult male rat. Biol Reprod 56:969–975PubMedGoogle Scholar
  109. Levin M, Johnson RL, Stern CD, Kuehn M, Tabin C (1995) A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 82:803–814CrossRefPubMedGoogle Scholar
  110. Lewen A, Soderstrom S, Hillered L, Ebendal T (1997) Expression of serine/threonine kinase receptors in traumatic brain injury. Neuroreport 8:475–479PubMedGoogle Scholar
  111. Lewis KA, Gray PC, Blount AL, MacConell LA, Wiater E, Bilezikjian LM, Vale W (2000) Betaglycan binds inhibin and can mediate functional antagonism of activin signaling. Nature 404:411–414CrossRefPubMedGoogle Scholar
  112. Lin SZ, Hoffer BJ, Kaplan P, Wang Y (1999) Osteogenic protein-1 protects against cerebral infarction induced by MCA ligation in adult rats. Stroke 30:126–133PubMedGoogle Scholar
  113. Ling N, Ying SY, Ueno N, Esch F, Denoroy L, Guillemin R (1985) Isolation and partial characterization of a Mr 32,000 protein with inhibin activity from porcine follicular fluid. Proc Natl Acad Sci USA 82:7217–7221PubMedGoogle Scholar
  114. Ling N, Ying SA, Ueno N, Shimasaki S, Esch F, Hotta M, Guillemin R (1986) Pituitary FSH is released by a heterodimer of the b-subunits from the two forms of inhibin. Nature 321:779–782Google Scholar
  115. Liu F, Ventura F, Doody J, Massague J (1995) Human type II receptor for bone morphogenic proteins (BMPs): extension of the two-kinase receptor model to the BMPs. Mol Cell Biol 15:3479–3486PubMedGoogle Scholar
  116. Liu X, Lee J, Cooley M, Bhogte E, Hartley S, Glick A (2003) Smad7 but not Smad6 cooperates with oncogenic ras to cause malignant conversion in a mouse model for squamous cell carcinoma. Cancer Res 63:7760–7768PubMedGoogle Scholar
  117. Lohmeyer M, Harrison PM, Kannan S, DeSantis M, O’Reilly NJ, Sternberg MJ, Salomon DS, Gullick WJ (1997) Chemical synthesis, structural modeling, and biological activity of the epidermal growth factor-like domain of human cripto. Biochemistry 36:3837–3845CrossRefPubMedGoogle Scholar
  118. Lopez-Casillas F, Wrana JL, Massague J (1993) Betaglycan presents ligand to the TGF beta signaling receptor. Cell 73:1435–1444.CrossRefPubMedGoogle Scholar
  119. MacConell LA, Barth S, Roberts VJ (1996) Distribution of follistatin messenger ribonucleic acid in the rat brain: implications for a role in the regulation of central reproductive functions. Endocrinology 137:2150–2158CrossRefPubMedGoogle Scholar
  120. MacConell LA, Widger AE, Barth-Hall S, Roberts VJ (1998) Expression of activin and follistatin in the rat hypothalamus: anatomical association with gonadotropin-releasing hormone neurons and possible role of central activin in the regulation of luteinizing hormone release. Endocrine 9:233–241CrossRefPubMedGoogle Scholar
  121. MacConell LA, Lawson MA, Mellon PL, Roberts VJ (1999) Activin A regulation of gonadotropin-releasing hormone synthesis and release in vitro. Neuroendocrinology 70:246–254CrossRefPubMedGoogle Scholar
  122. MacConell LA, Leal A, Vale W (2002) The distribution of betaglycan protein and mRNA in rat brain, pituitary and gonads: Implications for a role in inhibin-mediated reproductive functions. Endocrinology 143:1066–1075CrossRefPubMedGoogle Scholar
  123. Macias SM, Abdollah S, Hoodless PA, Pirone R, Attisano L, Wrana JL (1996) MADR2 is a substrate of the TGFbeta receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell 87:1215–1224CrossRefPubMedGoogle Scholar
  124. Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan RS, Zborowska E, Kinzler KW, Vogelstein B (1995) Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 268:1336–1338PubMedGoogle Scholar
  125. Mason AJ, Hayflick JS, Ling N, Esch F, Ueno N, Ying SY, Guillemen R, Niall H, Seeburg PH (1985) Complementary DNA sequences of ovarian follicular fluid inhibin show precursor structure and homology with transforming growth factor-beta. Nature 318:659–663CrossRefPubMedGoogle Scholar
  126. Massague J (1998) TGF-β signal transduction. Annu Rev Biochem 67:753–791CrossRefPubMedGoogle Scholar
  127. Massague J, Chen Y-C (2000) Controlling TGF-β signaling. Genes Dev 14:627–644PubMedGoogle Scholar
  128. Massague J, Wotton D (2000) Transcriptional control by the TGF-beta/Smad signaling system. Embo J 19:1745–1754CrossRefPubMedGoogle Scholar
  129. Massague J, Blain SW, Lo RS (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103:295–309CrossRefPubMedGoogle Scholar
  130. Mather JP, Attie KM, Woodruff TK, Rice GC, Phillips DM (1990) Activin stimulates spermatogonial proliferation in germ-sertoli cell cocultures from immature rat testis. Endocrinology 127:3206–3214PubMedGoogle Scholar
  131. Mather JP, Moore A, Li RH (1997) Activins, inhibins, and follistatins: further thoughts on a growing family of regulators. Proc Soc Exp Biol Med 215:209–222PubMedGoogle Scholar
  132. Mather JP, Woodruff TK, Krummen LA (1992) Paracrine regulation of reproductive function by inhibin and activin. Proc Soc Exp Biol Med 201:1–15PubMedGoogle Scholar
  133. Mathews LS, Vale WW (1991) Expression cloning of an activin receptor, a predicted transmembrane serine kinase. Cell 65:973–982CrossRefPubMedGoogle Scholar
  134. Matzuk MM, Finegold MJ, Su JGJ, Hsueh AJW, Bradley A (1992) Alpha-inhibin is a tumor-suppressor gene with gonadal specificity in mice. Nature 366:313–319CrossRefGoogle Scholar
  135. Matzuk MM, Finegold MJ, Mather JP, Krummen L, Lu H, Bradley A (1994) Development of cancer cachexia-like syndrome and adrenal tumors in inhibin-deficient mice. Proc Natl Acad Sci USA 91:8817–8821PubMedGoogle Scholar
  136. Matzuk MM, Lu N, Vogel H, Sellheyer K, Roop DR, Bradley A (1995) Multiple defects and perinatal death in mice deficient in follistatin. Nature 374:360–363CrossRefPubMedGoogle Scholar
  137. Matzuk MM, Kumar TR, Shou W, Coerver KA, Lau AL, Behringer RR, Finegold MJ (1996) Transgenic models to study the roles of inhibins and activins in reproduction, oncogenesis, and development. Recent Prog Horm Res 51:123–54; discussion 155–157PubMedGoogle Scholar
  138. McCarthy SA, Bicknell R (1993) Inhibition of vascular endothelial cell growth by Activin-A. J Biol Chem 268:23066–23071PubMedGoogle Scholar
  139. McFarlane JR, Foulds LM, O’Connor AE, Phillips DJ, Jenkin G, Hearn MT, de Kretser DM (1999) Uterine milk protein, a novel activin-binding protein, is present in ovine allantoic fluid. Endocrinology 140:4745–4752CrossRefPubMedGoogle Scholar
  140. Meunier H, Rivier C, Evans RM, Vale WW (1988) Gonadal and extra gonadal expression of inhibin α, βA and βB subunits in various tissues predicts diverse functions. Proc Natl Acad Sci USA 85:247–251PubMedGoogle Scholar
  141. Michel U, Albiston A, Findlay JK (1990) Rat follistatin: gonadal and extragonadal expression and evidence for alternative splicing. Biochem Biophys Res Commun 173:401–407CrossRefPubMedGoogle Scholar
  142. Michel U, Farnworth P, Findlay JK (1993) Follistatins: more than follicle-stimulating hormone suppressing proteins. Mol Cellul Endocrinol 91:1–11CrossRefGoogle Scholar
  143. Michel U, Gerber J, A EOC, Bunkowski S, Bruck W, Nau R, Phillips DJ (2003) Increased activin levels in cerebrospinal fluid of rabbits with bacterial meningitis are associated with activation of microglia. J Neurochem 86:238–245CrossRefPubMedGoogle Scholar
  144. Minchiotti G, Manco G, Parisi S, Lago CT, Rosa F, Persico MG (2001) Structure-function analysis of the EGF-CFC family member Cripto identifies residues essential for nodal signalling. Development 128:4501–4510PubMedGoogle Scholar
  145. Miyaki M, Iijima T, Konishi M, Sakai K, Ishii A, Yasuno M, Hishima T, Koike M, Shitara N, Iwama T, Utsunomiya J, Kuroki T, Mori T (1999) Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis. Oncogene 18:3098–3103CrossRefPubMedGoogle Scholar
  146. Miyamoto K, Hasegawa Y, Fukuda M, Nomura M, Igarashi M, Kangawa K, Matsuo H (1985) Isolation of porcine follicular fluid inhibin of 32K daltons. Biochem Biophys Res Commun 129:396–403CrossRefPubMedGoogle Scholar
  147. Morkel M, Huelsken J, Wakamiya M, Ding J, van de Wetering M, Clevers H, Taketo MM, Behringer RR, Shen MM, Birchmeier W (2003) Beta-catenin regulates Cripto-and Wnt3-dependent gene expression programs in mouse axis and mesoderm formation. Development 130:6283–6294CrossRefPubMedGoogle Scholar
  148. Nakao A, Afrakhte M, Moren A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin CH, ten Dijke P (1997) Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature 389:631–635CrossRefPubMedGoogle Scholar
  149. Nicolas FJ, Hill CS (2003) Attenuation of the TGF-beta-Smad signaling pathway in pancreatic tumor cells confers resistance to TGF-beta-induced growth arrest. Oncogene 22:3698–3711CrossRefPubMedGoogle Scholar
  150. Niemuller CA, Randall KJ, Webb DJ, Gonias SL, LaMarre J (1995) Alpha 2-macroglobulin conformation determines binding affinity for activin A and plasma clearance of activin A/alpha 2-macroglobulin complex. Endocrinology 136:5343–5349CrossRefPubMedGoogle Scholar
  151. Oda S, Nishimatsu S, Murakami K, Ueno N (1995) Molecular cloning and functional analysis of a new activin beta subunit: a dorsal mesoderm-inducing activity in Xenopus. Biochem Biophys Res Commun 210:581–588CrossRefPubMedGoogle Scholar
  152. Ogawa Y, Schmidt DK, Nathan RM, Armstrong RM, Miller KL, Sawamura SJ, Ziman JM, Erickson KL, Deleon ER, Rosen DM, al e (1992) Bovine bone activin enhances bone morphogenetic protein-induced ectopic bone formation. J Biol Chem 267:14233–14237PubMedGoogle Scholar
  153. Oliet SH, Plotsky PM, Bourque CW (1995) Effects of activin-A on neurons acutely isolated from the rat supraoptic nucleus. J Neuroendocrinol 7:661–663PubMedGoogle Scholar
  154. Onichtchouk D, Chen YG, Dosch R, Gawantka V, Delius H, Massague J, Niehrs C (1999) Silencing of TGF-beta signalling by the pseudoreceptor BAMBI. Nature 401:480–485CrossRefPubMedGoogle Scholar
  155. Otsuka F, Shimasaki S (2002) A novel function of bone morphogenetic protein-15 in the pituitary: selective synthesis and secretion of FSH by gonadotropes. Endocrinology 143:4938–4941CrossRefPubMedGoogle Scholar
  156. Paralkar VM, Weeks BS, Yu YM, Kleinman HK, Reddi AH (1992) Recombinant human bone morphogenetic protein 2B stimulates PC12 cell differentiation: potentiation and binding to type IV collagen. J Cell Biol 119:1721–1728CrossRefPubMedGoogle Scholar
  157. Phillips DJ (2000) Regulation of activin’s access to the cell: why is mother nature such a control freak? Bioessays 22:689–696.CrossRefPubMedGoogle Scholar
  158. Phillips DJ, deKretser DM (1998) Follistatin: A multifunctional regulatory protein. Front Neuroendocrinol 19:287–322CrossRefPubMedGoogle Scholar
  159. Plotsky PM, Kjaer A, Sutton SW, Sawchenko PE, Vale WW (1991) Central activin administration modulates corticotropin-releasing hormone and adrenocorticotropin secretion. Endocrinology 128:2520–2525PubMedGoogle Scholar
  160. Prevot V, Bouret S, Croix D, Takumi T, Jennes L, Mitchell V, Beauvillain JC (2000) Evidence that members of the TGFbeta superfamily play a role in regulation of the GnRH neuroendocrine axis: expression of a type I serine-threonine kinase receptor for TGRbeta and activin in GnRH neurones and hypothalamic areas of the female rat. J Neuroendocrinol 12:665–670CrossRefPubMedGoogle Scholar
  161. Reis FM, Di Blasio AM, Florio P, Ambrosini G, Di Loreto C, Petraglia F (2001) Evidence for local production of inhibin A and activin A in patients with ovarian endometriosis. Fertil Steril 75:367–373.CrossRefPubMedGoogle Scholar
  162. Reissmann E, Jornvall H, Blokzijl A, Andersson O, Chang C, Minchiotti G, Persico MG, Ibanez CF, Brivanlou AH (2001) The orphan receptor ALK7 and the Activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development. Genes Dev 15:2010–2022CrossRefPubMedGoogle Scholar
  163. Rivier J, Spiess J, McClintock R, Vaughan J, Vale W (1985) Purification and partial characterization of inhibin from porcine follicular fluid. Biochem Biophys Res Commun 133:120–127CrossRefPubMedGoogle Scholar
  164. Robertson DM, Foulds LM, Leversha L, Morgan FJ, Hearn MT, Burger HG, Wettenhall RE, de Kretser DM (1985) Isolation of inhibin from bovine follicular fluid. Biochem Biophys Res Commun 126:220–226CrossRefPubMedGoogle Scholar
  165. Roh JS, Bondestam J, Mazerbourg S, Kaivo-Oja N, Groome N, Ritvos O, Hsueh AJ (2003) Growth differentiation factor-9 stimulates inhibin production and activates Smad2 in cultured rat granulosa cells. Endocrinology 144:172–178CrossRefPubMedGoogle Scholar
  166. Ryan AK, Blumberg B, Rodriguez-Esteban C, Yonei-Tamura S, Tamura K, Tsukui T, de la Pe—a J, Sabbagh W, Greenwald J, Choe S, Norris DP, Robertson EJ, Evans RM, Rosenfeld MG, Izpis’a Belmonte JC (1998) Pitx2 determines left-right asymmetry of internal organs in vertebrates. Nature 394:545–551CrossRefPubMedGoogle Scholar
  167. Salomon DS, Bianco C, Ebert AD, Khan NI, De Santis M, Normanno N, Wechselberger C, Seno M, Williams K, Sanicola M, Foley S, Gullick WJ, Persico G (2000) The EGF-CFC family: novel epidermal growth factor-related proteins in development and cancer. Endocr Relat Cancer 7:199–226.CrossRefPubMedGoogle Scholar
  168. Satoh M, Sugino H, Yoshida T (2000) Activin promotes astrocytic differentiation of a multipotent neural stem cell line and an astrocyte progenitor cell line from murine central nervous system. Neurosci Lett 284:143–146CrossRefPubMedGoogle Scholar
  169. Savage C, Das P, Finelli AL, Townsend SR, Sun CY, Baird SE, Padgett RW (1996) Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor beta pathway components. Proc Natl Acad Sci USA 93:790–794CrossRefPubMedGoogle Scholar
  170. Sawchenko PE, Plotsky PM, Pfeiffer W, Cunningham ET, Jr., Vaughan J, Rivier J, Vale WW (1988) Inhibin P in central neural pathways involved in the control of oxytocin secretion. Nature 334:615–617CrossRefPubMedGoogle Scholar
  171. Scheufler C, Sebald W, Hulsmeyer M (1999) Crystal structure of human bone morphogenetic protein-2 at 2.7 A resolution. J Mol Biol 287:103–115CrossRefPubMedGoogle Scholar
  172. Schier AF (2003) Nodal signaling in vertebrate development. Annu Rev Cell Dev Biol 19:589–621CrossRefPubMedGoogle Scholar
  173. Schier AF, Shen MM (2000) Nodal signalling in vertebrate development. Nature 403:385–389CrossRefPubMedGoogle Scholar
  174. Schlunegger MP, Grtter MG (1992) An unusual feature revealed by the crystal structure at 2.2 ≈ resolution of human transforming growth factor-β2. Nature 358:430–434CrossRefPubMedGoogle Scholar
  175. Schubert D, Kimura H, LaCorbiere M, Vaughan J, Karr D, Fischer WH (1990) Activin is a nerve cell survival molecule. Nature 344:868–870CrossRefPubMedGoogle Scholar
  176. Schwall RH, Jakeman LB, Altar CA (1993a) Hypothalamic infusion of activin A increases water consumption and urine volume in the rat. Neuroendocrinology 57:510–516PubMedGoogle Scholar
  177. Schwall RH, Robbins K, Jardieu P, Chang L, Lai C, Terrell TG (1993b) Activin induces cell death in hepatocytes in vivo and in vitro. Hepatology 18:347–356CrossRefPubMedGoogle Scholar
  178. Sekelsky JJ, Newfeld SJ, Raftery LA, Chartoff EH, Gelbart WM (1995) Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics 139:1347–1358PubMedGoogle Scholar
  179. Shaha C, Morris PL, Chen CLC, Vale W, Bardin CW (1989) Immunostainable inhibin subunits are in multiple types of testicular cells. Endocrinology 125:1941–1950PubMedGoogle Scholar
  180. Shen MM, Schier AF (2000) The EGF-CFC gene family in vertebrate development. Trends Genet 16:303–309CrossRefPubMedGoogle Scholar
  181. Shen MM (2003) Decrypting the role of Cripto in tumorigenesis. J Clin Invest 112:500–502CrossRefPubMedGoogle Scholar
  182. Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700CrossRefPubMedGoogle Scholar
  183. Shimasaki S, Koga M, Buscaglia ML, Simons DM, Bicsak TA, Ling N (1989) Follistatin gene expression in the ovary and extragonadal tissues. Mol Endocrinol 3:651–659PubMedGoogle Scholar
  184. Shoji H, Nakamura T, van den Eijnden-van Raaij AJ, Sugino H (1998) Identification of a novel type II activin receptor, type IIA-N, induced during the neural differentiation of murine P19 embryonal carcinoma cells. Biochem Biophys Res Commun 246:320–324CrossRefPubMedGoogle Scholar
  185. Smith JC, Price BMJ, Van Nimmen K, Huylebroeck D (1990) Identification of a potent Xenopus mesoderm-inducing factor as a homologue of activin A. Nature 345:729–731CrossRefPubMedGoogle Scholar
  186. Song CZ, Siok TE, Gelehrter TD (1998) Smad4/DPC4 and Smad3 mediate transforming growth factor-beta (TGF-beta) signaling through direct binding to a novel TGF-beta-responsive element in the human plasminogen activator inhibitor-1 promoter. J Biol Chem 273:29287–29290CrossRefPubMedGoogle Scholar
  187. Song J, Oh SP, Schrewe H, Nomura M, Lei H, Okano M, Gridley T, Li E (1999) The type II activin receptors are essential for egg cylinder growth, gastrulation, and rostral head development in mice. Dev Biol 213:157–169CrossRefPubMedGoogle Scholar
  188. Su GH, Bansal R, Murphy KM, Montgomery E, Yeo CJ, Hruban RH, Kern SE (2001) ACVR1B (ALK4, activin receptor type IB) gene mutations in pancreatic carcinoma. Proc Natl Acad Sci U S A 98:3254–3257.CrossRefPubMedGoogle Scholar
  189. ten Dijke P, Ichijo H, Franzen P, Schulz P, Saras J, Toyoshima H, Heldin CH, Miyazono K (1993) Activin receptor-like kinases: a novel subclass of cell-surface receptors with predicted serine/threonine kinase activity. Oncogene 8:2879–2887PubMedGoogle Scholar
  190. ten Dijke P, Yamashita H, Ichijo H, Franzen P, Laiho M, Miyazono K, Heldin CH (1994a) Characterization of type I receptors for transforming growth factor-beta and activin. Science 264:101–104PubMedGoogle Scholar
  191. ten Dijke P, Yamashita H, Sampath TK, Reddi AH, Estevez M, Riddle DL, Ichijo H, Heldin CH, Miyazono K (1994b) Identification of type I receptors for osteogenic protein-1 and bone morphogenetic protein-4. J Biol Chem 269:16985–16988PubMedGoogle Scholar
  192. Thisse C, Thisse B (1999) Antivin, a novel and divergent member of the TGFbeta superfamily, negatively regulates mesoderm induction. Development 126:229–240PubMedGoogle Scholar
  193. Thompson TB, Woodruff TK, Jardetzky TS (2003) Structures of an ActRIIB:activin A complex reveal a novel binding mode for TGF-beta ligand:receptor interactions. Embo J 22:1555–1566CrossRefPubMedGoogle Scholar
  194. Thomsen G, Woolf T, Whitman M, Sokol S, Vaughan J, Vale W, Melton D (1990) Activins are expressed early in Xenopus embryogenesis and can induce axial mesoderm and anterior structures. Cell 63:485–493CrossRefPubMedGoogle Scholar
  195. Tian F, DaCosta Byfield S, Parks WT, Yoo S, Felici A, Tang B, Piek E, Wakefield LM, Roberts AB (2003) Reduction in Smad2/3 signaling enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Res 63:8284–8292PubMedGoogle Scholar
  196. Treier M, Gleiberman AS, O’Connell SM, Szeto DP, McMahon JA, McMahon AP, Rosenfeld MG (1998) Multistep signaling requirements for pituitary organogenesis in vivo. Genes Dev 12:1691–1704PubMedGoogle Scholar
  197. Tretter YP, Munz B, Hubner G, ten Bruggencate G, Werner S, Alzheimer C (1996) Strong induction of activin expression after hippocampal lesion. Neuroreport 7:1819–1823PubMedGoogle Scholar
  198. Tretter YP, Hertel M, Munz B, ten Bruggencate G, Werner S, Alzheimer C (2000) Induction of activin A is essential for the neuroprotective action of basic fibroblast growth factor in vivo. Nat Med 6:812–815CrossRefPubMedGoogle Scholar
  199. Trudeau VL, Pope L, de Winter JP, Hache RJ, Renaud LP (1996) Regulation of activin type-II receptor mRNA levels in rat hypothalamus by estradiol in vivo. J Neuroendocrinol 8:395–401CrossRefPubMedGoogle Scholar
  200. Tsuchida K, Mathews LS, Vale WW (1993) Cloning and characterization of a transmembrane serine kinase that acts as an activin type I receptor. Proc Natl Acad Sci USA 90:11242–11246PubMedGoogle Scholar
  201. Tsuchida K, Sawchenko PE, Nishikawa SI, Vale WW (1996) Molecular cloning of a novel type I receptor serine/threonine kinase for the TGFβ superfamily from rat brain. Mol Cell Neurosci 7:467–478CrossRefPubMedGoogle Scholar
  202. Uchida K, Nagatake M, Osada H, Yatabe Y, Kondo M, Mitsudomi T, Masuda A, Takahashi T (1996) Somatic in vivo alterations of the JV18-1 gene at 18q21 in human lung cancers. Cancer Res 56:5583–5585PubMedGoogle Scholar
  203. Vale W, Rivier J, Vaughan J, McClintock R, Corrigan A, Woo W, Karr D, Spiess J (1986) Purification and characterization of an FSH releasing protein from porcine ovarian follicular fluid. Nature 321:776–779CrossRefPubMedGoogle Scholar
  204. Vale W, Hsueh A, Rivier C, Yu J (1990) The inhibin/activin family of growth factors. In: Roberts AB (eds) Peptide growth factors and their receptors, Handbook of experimental pharmacology. Springer-Verlag, Heidelberg, pp 211–248Google Scholar
  205. van den Eijnden van Raaij AJ, van Achterberg TA, van der Kruijssen CM, Piersma AH, Huylebroeck D, de Laat SW, Mummery CL (1991) Differentiation of aggregated murine P19 embryonal carcinoma cells is induced by a novel visceral endoderm-specific FGF-like factor and inhibited by activin A. Mech Dev 33:157–165CrossRefPubMedGoogle Scholar
  206. Vaughan JM, Vale W (1992) a2-macroglobulin is a binding protein of inhibin and activin. Endocrinology 132:2038–2050CrossRefGoogle Scholar
  207. Vitt UA, Hsu SY, Hsueh AJ (2001) Evolution and classification of cystine knot-containing hormones and related extracellular signaling molecules. Mol Endocrinol 15:681–694.CrossRefPubMedGoogle Scholar
  208. von Bubnoff A, Cho KW (2001) Intracellular BMP signaling regulation in vertebrates: pathway or network? Dev Biol 239:1–14.CrossRefPubMedGoogle Scholar
  209. Wakefield LM, Roberts AB (2002) TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 12:22–29CrossRefPubMedGoogle Scholar
  210. Wang D, Kanuma T, Mizunuma H, Takama F, Ibuki Y, Wake N, Mogi A, Shitara Y, Takenoshita S (2000) Analysis of specific gene mutations in the transforming growth factor-beta signal transduction pathway in human ovarian cancer. Cancer Res 60:4507–4512PubMedGoogle Scholar
  211. Wang Y, Chang CF, Morales M, Chou J, Chen HL, Chiang YH, Lin SZ, Cadet JL, Deng X, Wang JY, Chen SY, Kaplan PL, Hoffer BJ (2001) Bone morphogenetic protein-6 reduces ischemia-induced brain damage in rats. Stroke 32:2170–2178.PubMedGoogle Scholar
  212. Wankell M, Werner S, Alzheimer C (2003) The roles of activin in cytoprotection and tissue repair. Ann NY Acad Sci 995:48–58PubMedGoogle Scholar
  213. Weiss J, Harris PE, Halvorson LM, Crowley J, W.F., Jameson JL (1992) Dynamic regulation of follicle-stimulating hormone-beta messenger ribonucleic acid levels by activin and Gonadotropin-Releasing hormone in perifused rat pituitary cells. Endocrinology 131:1403–1408CrossRefPubMedGoogle Scholar
  214. Welt C, Sidis Y, Keutmann H, Schneyer A (2002) Activins, inhibins, and follistatins: from endocrinology to signaling. A paradigm for the new millennium. Exp Biol Med (Maywood) 227:724–752Google Scholar
  215. Wiater E, Vale W (2003) Inhibin is an antagonist of bone morphogenetic protein signaling. J Biol Chem 278:7934–7941CrossRefPubMedGoogle Scholar
  216. Woodruff TK (1998) Regulation of cellular and system function by activin. Biochem Pharmacol 55:953–963CrossRefPubMedGoogle Scholar
  217. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA (1988) Novel regulators of bone formation: molecular clones and activities. Science 242:1528–1534PubMedGoogle Scholar
  218. Wrana JL, Attisano L (2000) The Smad pathway. Cytokine Growth Factor Rev 11:5–13CrossRefPubMedGoogle Scholar
  219. Wrana J, Attisano L, Carcamo J, Zentella A, Doody J, Laiho M, Wang X-F, Massague J (1992) Mechanism of activation of the TGF-b receptor. Nature 370:341–347CrossRefGoogle Scholar
  220. Wu DD, Lai M, Hughes PE, Sirimanne E, Gluckman PD, Williams CE (1999) Expression of the activin axis and neuronal rescue effects of recombinant activin A following hypoxic-ischemic brain injury in the infant rat. Brain Res 835:369–378CrossRefPubMedGoogle Scholar
  221. Xu JM, McKeehan K, Matsuzaki K, McKeehan WL (1995) Inhibin antagonizes inhibition of liver cell growth by activin by a dominant-negative mechanism. J Biol Chem 270:6308–6313CrossRefPubMedGoogle Scholar
  222. Yamaguchi A (1995) Regulation of differentiation pathway of skeletal mesenchymal cells in cell lines by transforming growth factor-beta superfamily. Semin Cell Biol 6:165–173CrossRefPubMedGoogle Scholar
  223. Yan YT, Liu JJ, Luo Y, E C, Haltiwanger RS, Abate-Shen C, Shen MM (2002) Dual roles of Cripto as a ligand and coreceptor in the nodal signaling pathway. Mol Cell Biol 22:4439–4449CrossRefPubMedGoogle Scholar
  224. Yeo C, Whitman M (2001) Nodal signals to Smads through Cripto-dependent and Cripto-independent mechanisms. Mol Cell 7:949–957CrossRefPubMedGoogle Scholar
  225. Yingling JM, Datto MB, Wong C, Frederick JP, Liberati NT, Wang XF (1997) Tumor suppressor Smad4 is a transforming growth factor beta-inducible DNA binding protein. Mol Cell Biol 17:7019–7028PubMedGoogle Scholar
  226. Yu J, Shao L, Lemas V, Yu AL, Vaughan J, Rivier J, Vale W (1987) The role of FSH releasing protein and inhibin in erythrodifferentiation. Nature 330:765–767CrossRefPubMedGoogle Scholar
  227. Zhang G, Ohsawa Y, Kametaka S, Shibata M, Waguri S, Uchiyama Y (2003) Regulation of FLRG expression in rat primary astroglial cells and injured brain tissue by transforming growth factor-beta 1 (TGF-beta 1). J Neurosci Res 72:33–45CrossRefPubMedGoogle Scholar
  228. Zhang J, Talbot WS, Schier AF (1998) Positional cloning identifies zebrafish one-eyed pinhead as a permissive EGF-related ligand required during gastrulation. Cell 92:241–251CrossRefPubMedGoogle Scholar
  229. Zhang Y, Feng X, We R, Derynck R (1996) Receptor-associated Mad homologues synergize as effectors of the TGF-beta response. Nature 383:168–172CrossRefPubMedGoogle Scholar
  230. Zhang Y, Feng XH, Derynck R (1998) Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-beta-induced transcription. Nature 394:909–913CrossRefPubMedGoogle Scholar
  231. Zhou X, Sasaki H, Lowe L, Hogan BL, Kuehn MR (1993) Nodal is a novel TGF-beta-like gene expressed in the mouse node during gastrulation. Nature 361:543–547CrossRefPubMedGoogle Scholar
  232. Zhu Y, Richardson JA, Parada LF, Graff JM (1998) Smad3 mutant mice develop metastatic colorectal cancer. Cell 94:703–714CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Peter C. Gray
  • Louise M. Bilezikjian
  • Craig A. Harrison
  • Ezra Wiater
  • Wylie Vale
    • 1
  1. 1.Clayton Foundation Laboratories for Peptide BiologyThe Salk Institute for Biological StudiesLa Jolla

Personalised recommendations