Applications of Heated Atomic Force Microscope Cantilevers

  • Brent A. Nelson
  • William P. King
Part of the NanoScience and Technology book series (NANO)

30.5 Summary and Conclusions

Heated AFM cantilevers have been used for thermal property measurement, microsystems actuation, and thermal processing, but applications using these capabilities have only begun to realize their full potential. Many physical, chemical, and biological phenomena depend upon temperature, and the most interesting measurements are likely yet to be demonstrated. For example, few precision force measurements have been made with heated AFM cantilevers, even though they are outstanding force transducers. Additionally, no investigations that we are aware of have explored the effects of heated probes as highly localized heat sources in biological or biochemical systems.

The most pressing unresolved issue in all of these applications, and for future applications, is the lack of precision quantitative measurements with well-understood uncertainty. The overall impact of heated AFM cantilever probes would be significantly enhanced by further quantitative investigation of heat flow in AFM probes, high-resolution temperature calibration, temperature determination at tip-substrate contacts, and possibly standardization of these across heated AFM cantilever probe types.


Atomic Force Microscope Probe Thermal Actuation Atomic Force Microscope Cantilever Heated Probe Cantilever Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pinnaduwage LA, Gehl A, Hedden DL, Muralidharan G, Thundat T, Lareau RT, Sulchek T, Manning L, Rogers B, Jones M, Adams JD (2003) Nature 425:474CrossRefGoogle Scholar
  2. 2.
    Berger R, Lang H, Gerber C, Gimzewski J, Fabian J, Scandella L, Meyer E, Guntherodt H (1998) Chem Phys Lett 294:363CrossRefGoogle Scholar
  3. 3.
    Passian A, Warmack RJ, Ferrell TL, Thundat T (2003) Phys Rev Lett 90:124503CrossRefGoogle Scholar
  4. 4.
    Passian A, Warmack RJ, Wig A, Farahi RH, Meriaudeau F, Ferrell TL, Thundat T (2003) Ultramicroscopy 97:401CrossRefGoogle Scholar
  5. 5.
    Passian A, Wig A, Meriaudeau F, Ferrell TL, Thundat T (2002) J Appl Phys 92:6326CrossRefGoogle Scholar
  6. 6.
    Lereu AL, Passian A, Warmack RJ, Ferrell TL, Thundat T (2004) Appl Phys Lett 84:1013CrossRefGoogle Scholar
  7. 7.
    Majumdar A (1999) Annu Rev Mater Sci 29:505CrossRefGoogle Scholar
  8. 8.
    Pylkki RJ, Moyer PJ, West PE (1994) Jpn J Appl Phys 33:3785CrossRefGoogle Scholar
  9. 9.
    Hammiche A, Pollock HM, Song M, Hourston DJ (1996) Meas Sci Technol 7:142CrossRefGoogle Scholar
  10. 10.
    Hammiche A, Bozec L, Conroy M, Pollock HM, Mills G, Weaver JMR, Price DM, Reading M, Hourston DJ, Song M (2000) J Vac Sci Technol B 18:1322CrossRefGoogle Scholar
  11. 11.
    Edinger K, Gotszalk T, Rangelow IW (2001) J Vac Sci Technol B 19:2856CrossRefGoogle Scholar
  12. 12.
    Li M-H, Gianchandani YB (2003) Sens Actuators A 104:236CrossRefGoogle Scholar
  13. 13.
    Li M-H, Gianchandani YB (2000) J Vac Sci Technol B 18:3600CrossRefGoogle Scholar
  14. 14.
    Hammiche A, Hourston DJ, Pollock HM, Reading M, Song M (1996) J Vac Sci Technol B 14:1486CrossRefGoogle Scholar
  15. 15.
    Nonnenmacher M, Wickramasinghe HK (1992) Appl Phys Lett 61:168CrossRefGoogle Scholar
  16. 16.
    Blanco C, Appleyard SP, Rand B (2002) J Microsc 205:21CrossRefGoogle Scholar
  17. 17.
    Lee J-H, Gianchandani YB (2004) Rev Sci Instrum 75:1222CrossRefGoogle Scholar
  18. 18.
    Oesterschulze E, Stopka M (1996) Microelectron Eng 31:241CrossRefGoogle Scholar
  19. 19.
    Varesi J, Majumdar A (1998) Appl Phys Lett 72:37CrossRefGoogle Scholar
  20. 20.
    Gomes S, Thannoy N, Grossel P, Depasse F, Bainier C, Charraut D (2001) Int J Thermal Sci 40:949CrossRefGoogle Scholar
  21. 21.
    Lefevre S, Volz S, Saulnier J-B, Fuentes C (2003) Rev Sci Instrum 74:2418CrossRefGoogle Scholar
  22. 22.
    Depasse F, Grossel P, Gomes S (2003) J Phys D: Appl Phys 36:204CrossRefGoogle Scholar
  23. 23.
    Arai T, Tomitori M (1998) Appl Phys A 66:S319CrossRefGoogle Scholar
  24. 24.
    Arai T, Tomitori M (1999) Appl Surf Sci 144–145:501CrossRefGoogle Scholar
  25. 25.
    Tomitori M, Arai T (1999) Appl Surf Sci 140:432CrossRefGoogle Scholar
  26. 26.
    Akiyama T, Staufer U, de Rooij NF, Lange D, Hagleitner C, Brand O, Baltes H, Tonin A, Hidber HR (2000) J Vac Sci Technol B 18:2669CrossRefGoogle Scholar
  27. 27.
    Akiyama T, Staufer U, de Rooij NF (2002) Rev Sci Instrum 73:2643CrossRefGoogle Scholar
  28. 28.
    Franks W, Lange D, Lee S, Hierlemann A, Spencer N, Baltes H (2002) Ultramicroscopy 91:21CrossRefGoogle Scholar
  29. 29.
    Sulchek T, Minne SC, Adams JD, Fletcher DA, Atalar A, Quate CF, Adderton DM (1999) Appl Phys Lett 75:1637CrossRefGoogle Scholar
  30. 30.
    Volden T, Zimmermann M, Lange D, Brand O, Baltes H (2004) Sens Actuators A 115:516CrossRefGoogle Scholar
  31. 31.
    Pedrak R, Ivanov T, Ivanova K, Gotszalk T, Abedinov N, Rangelow IW, Edinger K, Tomerov E, Schenkel T, Hudek P (2003) J Vac Sci Technol B 21:3102CrossRefGoogle Scholar
  32. 32.
    Manalis SR, Minne SC, Atalar A, Quate CF (1996) Rev Sci Instrum 67:3294CrossRefGoogle Scholar
  33. 33.
    Williams CC, Wickramasinghe HK (1986) Appl Phys Lett 49:1587CrossRefGoogle Scholar
  34. 34.
    Binnig G, Despont M, Drechsler U, Haberle W, Lutwyche M, Vettiger P, Mamin HJ, Chui BW, Kenny TW (1999) Appl Phys Lett 74:1329CrossRefGoogle Scholar
  35. 35.
    Lutwyche MI, Despont M, Drechsler U, Durig U, Haberle W, Rothuizen H, Stutz R, Widmer R, Binnig GK, Vettiger P (2000) Appl Phys Lett 77:3299CrossRefGoogle Scholar
  36. 36.
    King WP, Kenny TW, Goodson KE (2004) Appl Phys Lett 85:2086CrossRefGoogle Scholar
  37. 37.
    King WP, Kenny TW, Goodson KE, Cross G, Despont M, Durig U, Rothuizen H, Binnig GK, Vettiger P (2001) Appl Phys Lett 78:1300CrossRefGoogle Scholar
  38. 38.
    King WP, Kenny TW, Goodson KE, Cross GLW, Despont M, Durig UT, Rothuizen H, Binnig G, Vettiger P (2002) J Microelectromech Syst 11:765CrossRefGoogle Scholar
  39. 39.
    Hammiche A, Reading M, Pollock HM, Song M, Hourston DJ (1996) Rev Scientific Instruments 67:4268CrossRefGoogle Scholar
  40. 40.
    Berger R, Gerber C, Gimzewski J, Meyer E, Guntherodt H (1996) Appl Phys Lett 69:40CrossRefGoogle Scholar
  41. 41.
    Nakagawa Y, Schafer R, Guntherodt H-J (1998) Appl Phys Lett 73:2296CrossRefGoogle Scholar
  42. 42.
    Nakagawa Y, Schafer R (1999) Angew Chem Int Ed 38:1083CrossRefGoogle Scholar
  43. 43.
    Abedinov N, Grabiec P, Gotszalk T, Ivanov T, Voigt J, Rangelow IW (2001) J Vac Sci Technol A — Vac Surf Films 19:2884CrossRefGoogle Scholar
  44. 44.
    Blanco C, Lu S, Appleyard SP, Rand B (2003) Carbon 41:165CrossRefGoogle Scholar
  45. 45.
    Fabian J-H, Scandella L, Fuhrmann H, Berger R, Mezzacasa T, Musil C, Gobrecht J, Meyer E (2000) Ultramicroscopy 82:69CrossRefGoogle Scholar
  46. 46.
    Ono T, Esashi M (2004) Meas Sci Technol 15:1977CrossRefGoogle Scholar
  47. 47.
    Hierlemann A, Lange D, Hagleitner C, Kerness N, Koll A, Brand O, Baltes H (2000) Sens Actuators B 70:2CrossRefGoogle Scholar
  48. 48.
    Hagleitner C, Hierlemann A, Lange D, Kummer A, Kerness N, Brand O, Baltes H (2001) Nature 414:293CrossRefGoogle Scholar
  49. 49.
    Grigorov AV, Davis ZJ, Rasmussen P, Boisen A (2004) Microelectron Eng 73–74:881CrossRefGoogle Scholar
  50. 50.
    Lavrik NV, Sepaniak MJ, Datskos PG (2004) Rev Sci Instrum 75:2229CrossRefGoogle Scholar
  51. 51.
    Lee DW, Despont M, Drechsler U, Gerber C, Vettiger P, Wetzel A, Bennewitz R, Meyer E (2003) Microelectron Eng 67–68:635CrossRefGoogle Scholar
  52. 52.
    Lee D, Wetzel A, Bennewitz R, Meyer E, Despont M, Vettiger P, Gerber C (2004) Appl Phys Lett 84:1558CrossRefGoogle Scholar
  53. 53.
    Pinnaduwage LA, Wig A, Hedden DL, Gehl A, Yi D, Thundat T, Lareau RT (2004) J Appl Phys 95:5871CrossRefGoogle Scholar
  54. 54.
    Pinnaduwage LA, Thundat T, Gehl A, Wilson SD, Hedden DL, Lareau RT (2004) Ultramicroscopy 100:211CrossRefGoogle Scholar
  55. 55.
    Ruigrok JJM, Coehoorn R, Cumpson SR, Kesteren HW (2000) J Appl Phys 87:5389CrossRefGoogle Scholar
  56. 56.
    Marrian CRK, Tennet DM (2003) J Vac Sci Technol A 21:S207CrossRefGoogle Scholar
  57. 57.
    Snow ES, Campbell PM (1995) Science 270:1639Google Scholar
  58. 58.
    Cooper EB, Manalis SR, Fang H, Dai H, Matsumoto K, Minne SC, Hunt T, Quate CF (1999) Appl Phys Lett 75:3566CrossRefGoogle Scholar
  59. 59.
    Wilder K, Quate C, Adderton D, Bernstein R, Elings V (1998) Appl Phys Lett 73:2527CrossRefGoogle Scholar
  60. 60.
    Eigler DM, Schweizer EK (1990) Nature 344:524CrossRefGoogle Scholar
  61. 61.
    Piner RD, Zhu J, Xu F, Hong S, Mirkin CA (1999) Science 283:661CrossRefGoogle Scholar
  62. 62.
    Mamin HJ, Rugar D (1992) Appl Phys Lett 61:1003CrossRefGoogle Scholar
  63. 63.
    Ried RP, Mamin HJ, Terris BD, Fan LS, Rugar D (1997) J Microelectromech Syst 6:294CrossRefGoogle Scholar
  64. 64.
    Hoen S, Mamin HJ, Rugar D (1994) Appl Phys Lett 64:267CrossRefGoogle Scholar
  65. 65.
    Mamin HJ (1996) Appl Phys Lett 69:433CrossRefGoogle Scholar
  66. 66.
    Chui BW, Stowe TD, Ju YS, Goodson KE, Kenny TW, Mamin HJ, Terris BD, Ried RP (1998) J Microelectromech Syst 7:69CrossRefGoogle Scholar
  67. 67.
    Lee CS, Nam HJ, Kim YS, Jin WH, Cho SM, Bu JU (2003) Appl Phys Lett 83:4839CrossRefGoogle Scholar
  68. 68.
    Yang ZX, Li XX, Wang YL, Bao HF, Liu M (2004) Microelectron J 35:479CrossRefGoogle Scholar
  69. 69.
    Vettiger P, Cross G, Despont M, Drechsler U, Duerig U, Gotsmann B, Haberle W, Lantz MA, Rothuizen HE, Stutz R, Binnig GK (2002) IEEE Trans Nanotech 1:39CrossRefGoogle Scholar
  70. 70.
    Drechsler U, Burer N, Despont M, Durig U, Gotsmann B, Robin F, Vettiger P (2003) Microelectron Eng 67–8:397CrossRefGoogle Scholar
  71. 71.
    Pantazi A, Lantz MA, Cherubini G, Pozidis H, Eleftheriou E (2004) Nanotechnology 15:S612CrossRefGoogle Scholar
  72. 72.
    Vettiger P, Brugger J, Despont M, Drechsler U, Durig U, Haberle W, Lutwyche M, Rothuizen H, Stutz R, Widmer R, Binnig G (1999) Microelectron Eng 46:11CrossRefGoogle Scholar
  73. 73.
    Despont M, Brugger J, Drechsler U, Dürig U, Häberle W, Lutwyche M, Rothuizen H, Stutz R, Widmer R, Rohrer H, Binnig GK, Vettiger P (2000) Sens Actuators A 80:100CrossRefGoogle Scholar
  74. 74.
    Vettiger P, Despont M, Drechsler U, Durig U, Haberle W, Lutwyche MI, Rothuizen HE, Stutz R, Widmer R, Binnig GK (2000) IBM J Research and Development 44:323CrossRefGoogle Scholar
  75. 75.
    Eleftheriou E, Antonakopoulos T, Binnig GK, Cherubini G, Despont M, Dholakia A, Durig U, Lantz MA, Pozidis H, Rothuizen HE, Vettiger P (2003) IEEE Trans Magnetics 39:938CrossRefGoogle Scholar
  76. 76.
    Lantz MA, Gotsmann B, Durig UT, Vettiger P, Nakayama Y, Shimizu T, Tokumoto H (2003) Appl Phys Lett 83:1266CrossRefGoogle Scholar
  77. 77.
    Gotsmann B, Durig U (2004) Langmuir 20:1495CrossRefGoogle Scholar
  78. 78.
    Despont M, Drechsler U, Yu R, Pogge HB, Vettiger P (2004) J Microelectromech Syst 13:895CrossRefGoogle Scholar
  79. 79.
    Vettiger P, Binnig G (2003) Sci Am 288:46CrossRefGoogle Scholar
  80. 80.
    Schwartz PV (2002) Langmuir 18:4041CrossRefGoogle Scholar
  81. 81.
    Sheehan PE, Whitman LJ (2002) Phys Rev Lett 88:156104CrossRefGoogle Scholar
  82. 82.
    Rozhok S, Piner R, Mirkin CA (2003) J Phys Chem B 107:751CrossRefGoogle Scholar
  83. 83.
    Bullen D, Wang XF, Zou J, Chung SW, Mirkin CA, Liu C (2004) J Microelectromech Syst 13:594CrossRefGoogle Scholar
  84. 84.
    Bullen D, Chung SW, Wang XF, Zou J, Mirkin CA, Liu C (2004) Appl Phys Lett 84:789CrossRefGoogle Scholar
  85. 85.
    Zhang M, Bullen D, Chung SW, Hong S, Ryu KS, Fan ZF, Mirkin CA, Liu C (2002) Nanotechnology 13:212CrossRefGoogle Scholar
  86. 86.
    Sheehan PE, Whitman LJ, King WP, Nelson BA (2004) Appl Phys Lett 85:1589CrossRefGoogle Scholar
  87. 87.
    Chimmalgi A, Choi TY, Grigoropoulos CP, Komvopoulos K (2003) Appl Phys Lett 82:1146CrossRefGoogle Scholar
  88. 88.
    Vasilev C, Heinzelmann H, Reiter G (2004) J Polymer Sci: Part B: Polymer Phys 42:1312CrossRefGoogle Scholar
  89. 89.
    Basu AS, McNamara S, Gianchandani YB (2004) J Vac Sci Technol B 22:3217CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Brent A. Nelson
    • 1
  • William P. King
    • 1
  1. 1.Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlanta

Personalised recommendations