AFM Applications for Contact and Wear Simulation

  • Nikolai K. Myshkin
  • Mark I. Petrokovets
  • Alexander V. Kovalev
Part of the NanoScience and Technology book series (NANO)

20.5 Conclusions

At present, there is a strong trend towards a transition from macro to micro and nanoscale that may give a new insight into the basic problems of tribology, such as the influence of deformation and adhesion mechanisms on friction and wear.

The atomic force microscope provides a unique opportunity to obtain the 3D surface topography at nanoscale, to simulate the contact interaction of rough surfaces, to measure the micro-mechanical properties of materials in the thin surface layers, and to model the elementary acts of wear. AFM can be efficiently used in the development ofmultilevel models of surface roughness and contact simulation based on these models.

There are certain drawbacks of AFM related to the dynamics of probe-to-surface interaction and effects of probe shape and hardness on the test data. These drawbacks can be overcome by using precise quasi-static devices and microtribometers in combination with AFM.

It is clear that progress in engineering will provide a lot of new fields in applications of AFM, but micro- and nanotribology continue to be fascinating and fruitful areas for such applications.


Atomic Force Microscope Scanning Probe Microscopy Contact Spot Real Contact Area Wear Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Binning G, Quate CF, Gerber Ch (1986) Phys Rev Lett 56:930CrossRefGoogle Scholar
  2. 2.
    Bhushan B, Israelachvili JN, Landman U (1995) Nature 374:607CrossRefGoogle Scholar
  3. 3.
    Bhushan B (1995) (ed) Handbook of micro/nano tribology. CRC Press, New YorkGoogle Scholar
  4. 4.
    Ren N, Lee Si (1993) ASME J Tribology 115:597CrossRefGoogle Scholar
  5. 5.
    Myshkin NK, Petrokovets MI, Chizhik SA (1998) Tribol Int 31:79CrossRefGoogle Scholar
  6. 6.
    Myshkin NK, Kim Ch, Petrokovets MI (1997) Introduction to tribology. CMG Publishers, SeoulGoogle Scholar
  7. 7.
    Myshkin NK, Petrokovets MI, Chizhik SA (2001) In: Bhushan B (ed) Fundamentals of tribology and bridging the gap between the macro-and micro/nanoscales. Kluwer, Dordrecht, p 423Google Scholar
  8. 8.
    Bennet JM, Dancy JH (1981) Appl Opt 20:1785CrossRefGoogle Scholar
  9. 9.
    Kohno T, Osawa N, Miyamoto K, Musha T (1985) Proc Eng 7:231CrossRefGoogle Scholar
  10. 10.
    Bhushan B, Wyant JC, Meiling J (1988) Wear 122:301CrossRefGoogle Scholar
  11. 11.
    Myshkin NK, Grigoryev AYa, Kholodilov OV (1992) Wear 153:119CrossRefGoogle Scholar
  12. 12.
    Binnig G, Rohrer H (1982) Helv Physica Acta 55:726Google Scholar
  13. 13.
    Sarid D (1991) Scanning force microscopy. Oxford University Press, New YorkGoogle Scholar
  14. 14.
    Greenwood JA, Williamson JBP (1966) Proc Roy Soc A295:300Google Scholar
  15. 15.
    Johnson KL, Kendall K, Roberts AD (1971) Proc Roy Soc A324:301Google Scholar
  16. 16.
    Deryagin BV, Muller VM, Toporov YuP (1975) J Colloid Interface Sci 53:314CrossRefGoogle Scholar
  17. 17.
    Fuller KNG, Tabor D (1975) Proc Roy Soc A345:327Google Scholar
  18. 18.
    Bush AW, Gibson RD, Keogh GR (1976) Wear 40:399CrossRefGoogle Scholar
  19. 19.
    Archard JF (1957) Proc Roy Soc A243:190Google Scholar
  20. 20.
    Greenwood JA, Tripp JH (1967) ASME J of Appl Mech 34:153Google Scholar
  21. 21.
    Chang WR, Etsion I, Bogy DB (1988) ASME J Trib 110:50Google Scholar
  22. 22.
    Deryagin BV, Krotova NA, Smilga VP (1978) Adhesion of solids. Consultant Bureau, New YorkGoogle Scholar
  23. 23.
    Israelachvili JN (1991) Intermolecular and surface forces, 2nd edn. Academic Press, LondonGoogle Scholar
  24. 24.
    Gibson CT, Watson GS, Mapledoram LD, Kondo H, Myhra S (1999) Appl Surf Sci 144–145:618CrossRefGoogle Scholar
  25. 25.
    Israelachvili JN (1992) Surf Sci Rep 14:109CrossRefGoogle Scholar
  26. 26.
    Myshkin NK, Grigoriev AYa, Dubravin AM, Komkov OYu, Spencer ND, Tosatti M (2004) 14th Int Colloquium Tribology. Esslingen, GermanyGoogle Scholar
  27. 27.
    Myshkin NK, Kovalev AV, Kovaleva IN, Grigoriev AYa (2004) Proc of 4th Int Tribology Conference. Prague, Czech RepublicGoogle Scholar
  28. 28.
    Luzinov I, Julthongpiput D, Tsukruk VV (2000) Macromolecules 33:7629CrossRefGoogle Scholar
  29. 29.
    Tsukruk VV, Luzinov I, Julthongpiput D (1999) Langmuir 15:3029CrossRefGoogle Scholar
  30. 30.
    Hofer R, Textor M, Spencer ND (2001) Langmuir 17:4014Google Scholar
  31. 31.
    Textor M, Ruiz L, Hofer R, Rossi A, Feldman K, Hähner G, Spencer ND (2000) Langmuir 16:3257CrossRefGoogle Scholar
  32. 32.
    Myshkin NK, Goryacheva IG, Dearnley PA, Grigoriev AYa, Dubravin AM, Komkov OYu, Kovaleva IN (2003) Interfaces in advanced materials IAM’03. Chernogolovka, RussiaGoogle Scholar
  33. 33.
    Sayles RS, Thomas TR (1978) Nature 271:431CrossRefGoogle Scholar
  34. 34.
    Patir N (1978) Wear 47:263CrossRefGoogle Scholar
  35. 35.
    Hu YZ, Tonder K (1992) Int J Mach Tool Manufact 32:82Google Scholar
  36. 36.
    Webster MN, Sayles RS (1986) ASME J Trib 108:314CrossRefGoogle Scholar
  37. 37.
    Ren N, Lee SiC (1993) ASME J Trib 115:597Google Scholar
  38. 38.
    Tian X, Bhushan B (1996) ASME J Trib 118:33Google Scholar
  39. 39.
    Mate CM, Wu J (2000) In: Tsukruk VV, Wahl K (eds) Microstructure and microtribology of polymer surfaces. ACS Symposium Series 741, p 405Google Scholar
  40. 40.
    Muller RS (1997) In: Bhushan B (ed) Micro/nanotribology and its applications. Kluwer, Dordrecht, p 579Google Scholar
  41. 41.
    Bhushan B (1997) (ed) Micro/nanotribology and its applications. Kluwer, DordrechtGoogle Scholar
  42. 42.
    Chen X, Vlassak J (2001) J Mater Res 16:2974Google Scholar
  43. 43.
    Tsukruk VV (2001) Adv Mater 13:95CrossRefGoogle Scholar
  44. 44.
    Bliznyuk VN, Everson MP, Tsukruk VV (1998) J Tribol 120:489Google Scholar
  45. 45.
    Gorbunov V, Fuchigami N, Stone M, Grace M, Tsukruk VV (2002) Biomacromolecules 3:106CrossRefGoogle Scholar
  46. 46.
    Tsukruk VV, Shulha H, Zhai X (2003) Appl Phys Lett 82:907CrossRefGoogle Scholar
  47. 47.
    Tsukruk VV, Gorbunov VV (2001) Microsc Today 1:8Google Scholar
  48. 48.
    Kovalev A, Shulha H, Lemieux M, Myshkin N, Tsukruk VV (2004) J Mater Res 19:716CrossRefGoogle Scholar
  49. 49.
    Shulga H, Kovalev A, Myshkin N, Tsukruk V (2004) Eur Polym J 40:949CrossRefGoogle Scholar
  50. 50.
    LeMieux M, Shulha H, Kovalev A, Minko S, Tsukruk VV (2004) Polym Mater Sci Eng 90:207Google Scholar
  51. 51.
    Oliver W, Pharr G (1992) J Mater Res 7:1564Google Scholar
  52. 52.
    Sneddon N (1965) Int J Eng Sci 3:47CrossRefGoogle Scholar
  53. 53.
    Johnson KL (1985) Contact mechanics. Cambridge University PressGoogle Scholar
  54. 54.
    Nix WD (1989) Metal Trans 20A:2217Google Scholar
  55. 55.
    Pharr GM, Oliver WC (1992) MRS Bull 17:28Google Scholar
  56. 56.
    Doerner MF, Nix WD (1986) J Mater Res 1:601Google Scholar
  57. 57.
    Gao H, Chiu CH, Lee J (1992) Int J Solids Struct 29:2471CrossRefGoogle Scholar
  58. 58.
    Mencik J, Munz D, Quandt E, Weppelmann ER, Swain MV (1997) J Mater Res 12:2475Google Scholar
  59. 59.
    Tsukruk VV, Gorbunov VV (2002) Probe Microsc 3–4:241CrossRefGoogle Scholar
  60. 60.
    Tsukruk VV, Ahn H, Kim D, Sidorenko A (2002) Appl Phys Lett 80:4825CrossRefGoogle Scholar
  61. 61.
    Burnham N, Colton RJ (1989) Vac Sci Technol A7:2906CrossRefGoogle Scholar
  62. 62.
    Blank V, Popov M, Lvova N, Gogolinsky K, Reshetov V (1997) J Mat Res 12:3109Google Scholar
  63. 63.
    Jiang Z, Lu C-J, Bogy DB, Miyamoto T (1995) Trans ASME J Tribol 117:328Google Scholar
  64. 64.
    Martinu L, Raveh A, Boutard D, Houle S, Poitras D, Vella N, Wertheimer MR (1993) Diamond Relat Mater 2:673CrossRefGoogle Scholar
  65. 65.
    Wei B, Komvopoulos K (1996) Trans ASME J Trib 118:431Google Scholar
  66. 66.
    Myshkin NK, Goryacheva IG, Kovalev AV, Dearnley PA (2002) Surf Eng 18:381CrossRefGoogle Scholar
  67. 67.
    Fox V, Jones A, Renevier NM, Teer DG (2000) Surf Coat Technol 125:347CrossRefGoogle Scholar
  68. 68.
    Yang S, Camino D, Jones A, Teer DG (2000) Surf Coat Technol 124:110CrossRefGoogle Scholar
  69. 69.
    Bykov V, Gologanov A, Shevyakov V (1998) Appl Phys A 66:499CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Nikolai K. Myshkin
    • 1
  • Mark I. Petrokovets
    • 1
  • Alexander V. Kovalev
    • 1
  1. 1.Tribology DepartmentMetal-Polymer Research Institute of Belarus National Academy of SciencesGomelBelarus

Personalised recommendations