Scanning Probe Microscopy: From Living Cells to the Subatomic Range

  • Ille C. Gebeshuber
  • Manfred Drack
  • Friedrich Aumayr
  • Hannspeter Winter
  • Friedrich Franek
Part of the NanoScience and Technology book series (NANO)

13.6 Conclusions and Outlook

In this review, we have presented scanning probe microscopy across dimensions from large samples like single cells, via single biomolecules and nanometer small ion induced defects on crystal surfaces to subatomic features like electronic orbitals and single electron spins.

Scanning probe microscopy is on its way to a standard laboratory method: subatomic features can be imaged, and with magnetic resonance force microscopy it has even left the two-dimensional surface regime. Perhaps in the not too distant future 3D-imaging of (complex) molecules, at surfaces or in the bulk state, with atomic resolution might become possible with these powerful techniques. The 3-D MRFM would also deliver chemical specific information because each magnetic nucleus has a unique gyromagnetic ratio.


Scan Probe Microscopy Highly Oriented Pyrolytic Graphite Nature Struct Biol Nature Publishing Group Highly Oriented Pyrolytic Graphite Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Round FE, Crawford RM, Mann DG (1990) Diatoms: biology and morphology of the genera, Cambridge University PressGoogle Scholar
  2. 2.
    Hecky RE, Mopper K, Kilham P, Degens ET (1973) Marine Biol 19:323CrossRefGoogle Scholar
  3. 3.
    Gordon R, Sterrenburg F, Sandhage K (guest eds) (2005) Diatom nanotechnology, special issue J Nanosci Nanotechnol 5:1Google Scholar
  4. 4.
    Gebeshuber IC, Thompson JB, Del Amo Y, Stachelberger H, Kindt JH (2002) Mat Sci Technol 18:763CrossRefGoogle Scholar
  5. 5.
    Werner D (1977) The biology of diatoms, University of California PressGoogle Scholar
  6. 6.
    Gordon R, Drum RW (1994) Int Rev Cytol 150:243CrossRefGoogle Scholar
  7. 7.
    Linder A, Colchero J, Apell H-J, Marti O, Mlynek J (1992) Ultramicrosc 42–44:329CrossRefGoogle Scholar
  8. 8.
    Almqvist N, Delamo Y, Smith BL, Thomson NH, Bartholdson A, Lal R, Brzezinski M, Hansma PK (2001) J Microsc 202:518CrossRefGoogle Scholar
  9. 9.
    Higgins MJ, Crawford SA, Mulvaney P, Wetherbee R (2002) Protist 153:25CrossRefGoogle Scholar
  10. 10.
    Gebeshuber IC, Kindt JH, Thompson JB, Del Amo Y, Stachelberger H, Brzezinski M, Stucky GD, Morse DE, Hansma PK (2003a) J Microsc 212:292CrossRefGoogle Scholar
  11. 11.
    Higgins MJ, Sader JE, Mulvaney P, Wetherbee R (2003a) J Phycol 39:722CrossRefGoogle Scholar
  12. 12.
    Higgins MJ, Molino P, Mulvaney P, Wetherbee R (2003b) J Phycol 39:1181CrossRefGoogle Scholar
  13. 13.
    Lee Y, Ding Z, Bard AJ (2002) Anal Chem 74:3634CrossRefGoogle Scholar
  14. 14.
    Hamm CE, Merkel R, Springer O, Jurkojc P, Maier C, Prechtel K, Smetacek V (2003) Nature 421:841CrossRefGoogle Scholar
  15. 15.
    Arce FT, Avci R, Beech IB, Cooksey KE, Wigglesworth-Cooksey B (2004) Biophys J 87(6):4284CrossRefGoogle Scholar
  16. 16.
    Solomon B, Taraboulos A, Katchalski-Katzir E (2002) Conformational diseases: a compendium based on the 1st international workshop on conformational diseases, S Karger Pub, Tunbridge Wells, UKGoogle Scholar
  17. 17.
    Dobson CM (2002) Nature 418:729CrossRefGoogle Scholar
  18. 18.
    Dobson CM (2003) Nature 426:884CrossRefGoogle Scholar
  19. 19.
    Greulic KO (2004) Curr Pharmac Biotech 5:243CrossRefGoogle Scholar
  20. 20.
    Viani MB, Pietrasanta LI, Thompson JB, Chand A, Gebeshuber IC, Kindt JH, Richter M, Hansma HG, Hansma PK (2000) Nature Struct Biol 7:644CrossRefGoogle Scholar
  21. 21.
    Walters DA, Cleveland JP, Thomson NH, Hansma PK, Wendman MA, Gurley G, Elings V (1996) Rev Sci Instrum 67:3583CrossRefGoogle Scholar
  22. 22.
    Viani MB, Schäffer TE, Chand A, Rief M, Gaub HE, Hansma PK (1999a) J Appl Phys 86:2258CrossRefGoogle Scholar
  23. 23.
    Viani MB, Schäffer TE, Paloczi GT, Pietrasanta LI, Smith BL, Thompson JB, Richter M, Rief M, Gaub HE, Plaxco KW, Cleland AN, Hansma HG, Hansma PK (1999b) Rev Sci Instrum 70:4300CrossRefGoogle Scholar
  24. 24.
    Braig K, Otwinowski Z, Hegde R, Boisvert DC, Joachimiak A, Horwich AL, Sigler PB (1994) Nature 371:578CrossRefGoogle Scholar
  25. 25.
    Hunt JF, Weaver AJ, Landry SJ, Gierasch L, Eisenhofer J (1996) Nature 379:37CrossRefGoogle Scholar
  26. 26.
    Boisvert DC, Wang J, Otiwonowski Z, Horwich AL, Sigler PB (1996) Nature Struct Biol 3:170CrossRefGoogle Scholar
  27. 27.
    Xu Z, Horwich AL, Sigler PB (1997) Nature 388:741CrossRefGoogle Scholar
  28. 28.
    Chen S, Roseman AM, Hunter AS, Wood SP, Burston SG, Ranson NA, Clarke AR, Saibil HR (1994) Nature 371:261CrossRefGoogle Scholar
  29. 29.
    Roseman AM, Chen S, White H, Braig K, Saibil HR (1996) Cell 87:241CrossRefGoogle Scholar
  30. 30.
    Ziaie B, Baldi A, Atashbar MZ (2004) Introduction to micro/nanofabrication In: Bhushan B (ed) Springer handbook of nanotechnology. Springer, Berlin Heidelberg New York, p 147Google Scholar
  31. 31.
    Rogers JA (2004) Stamping techniques for micro and nanofabrication: methods and applications. In: Bhushan B (ed) Springer handbook of nanotechnology. Springer, Berlin Heidelberg New York, p 185Google Scholar
  32. 32.
    Arnau A, Aumayr F, Echenique PM, Grether M, Heiland W, Limburg J, Morgenstern R, Roncin P, Schippers S, Schuch R, Stolterfoht N, Varga P, Zouros TJM, Winter HP (1997) Surf Sci Rep 27:113CrossRefGoogle Scholar
  33. 33.
    Winter HP, Aumayr F (2002) Europhys News 6:215CrossRefGoogle Scholar
  34. 34.
    Sporn M, Libiseller G, Neidhart T, Schmid M, Aumayr F, Winter HP, Varga P, Grether M, Niemann D, Stolterfoht N (1997) Phys Rev Lett 79:945CrossRefGoogle Scholar
  35. 35.
    Aumayr F, Burgdörfer J, Varga P, Winter HP (1999) Comm Atom Molecul Phys 34:201Google Scholar
  36. 36.
    Schenkel T, Hamza AV, Barnes AV, DH Schneider (1999) Progr Surf Sci 61:23CrossRefGoogle Scholar
  37. 37.
    Hayderer G, Cernusca S, Schmid M, Varga P, Winter HP, Aumayr F, Niemann D, Hoffmann V, Stolterfoht N, Lemell C, Wirtz L, Burgdörfer J (2001) Phys Rev Lett 86:3530CrossRefGoogle Scholar
  38. 38.
    Hayderer G, Schmid M, Varga P, Winter HP, Aumayr F, Wirtz L, Lemell C, Burgdörfer J, Hägg L, Reinhold CO (1999) Phys Rev Lett 83:3948CrossRefGoogle Scholar
  39. 39.
    Porte L, de Villeneuve CH, Phaner M (1991) J Vac Sci Technol B 9, 1064CrossRefGoogle Scholar
  40. 40.
    Coregater R, Claverie A, Chahboun A, Landry V, Ajustron F, Beauvillain J (1992) Surf Sci 262:208CrossRefGoogle Scholar
  41. 41.
    You HX, Brown NMD, Al-Assadi KF (1992) Surf Sci 279:189CrossRefGoogle Scholar
  42. 42.
    Mazukawa T, Suzuki S, Fukai T, Tanaka T and Ohdomari I (1996) Appl Surf Sci 107:227CrossRefGoogle Scholar
  43. 43.
    Mochiji K, Yamamoto S, Shimizu H, Ohtani S, Seguchi T, Kobayashi N (1997) J Appl Phys 82:6037CrossRefGoogle Scholar
  44. 44.
    Reimann KP, Bolse W, Geyer U, Lieb KP (1995) Europhys Lett 30:463Google Scholar
  45. 45.
    Habenicht S, Bolse W, Feldermann H, Geyer U, Hofsäss H, Lieb KP, Roccaforte F (2000) Europhys Lett 50:209CrossRefGoogle Scholar
  46. 46.
    Neumann R (1999) Nucl Instrum Meth B 151:42CrossRefGoogle Scholar
  47. 47.
    Hahn R, Kang K, Song S, J Jeon (1996) Phys Rev B 53:1725CrossRefGoogle Scholar
  48. 48.
    Hahn R, Kang K (1999) Phys Rev B 60:600CrossRefGoogle Scholar
  49. 49.
    Minniti R, Ratliff LP, Gillaspy JD (2001) Phys Scr T92:22CrossRefGoogle Scholar
  50. 50.
    Hayderer G, Cernusca S, Schmid M, Varga P, Winter HP, Aumayr F (2001) Phys Scr T92:156CrossRefGoogle Scholar
  51. 51.
    Terada M, Nakamura N, Nakai Y, Kanai Y, Ohtani S, Komaki K, Yamazaki Y (2004) Observation of an HCI-induced nano-dot on an HOPG surface with STM and AFM In: Rudzikas Z (ed) Abstracts HCI-2004 12th international conference on the physics of highly charged ions, European Physical Society, p 208Google Scholar
  52. 52.
    Terada M, Nakamura N, Nakai Y, Kanai Y, Ohtani S, Komaki K, Yamazaki Y (2005) Nucl Instrum Meth Phys Res B 235:452CrossRefGoogle Scholar
  53. 53.
    Gebeshuber IC, Cernusca S, Aumayr F and Winter HP (2003) Int J Mass Spectrom 229:27CrossRefGoogle Scholar
  54. 54.
    Meguro T, Hida A, Koguchi Y, Miyamoto S, Yamamoto Y, Takai H, Maeda K, Aoyagi Y (2003) Nuc Instrum Meth B 209:170CrossRefGoogle Scholar
  55. 55.
    Hida A, Meguro T, Maeda K, Aoyagi Y (2003) Nuc Instrum Meth B 205:736CrossRefGoogle Scholar
  56. 56.
    Hahn R, Kang K, Song S, Jeon J (1996) Phys Rev B 53:1725CrossRefGoogle Scholar
  57. 57.
    Hahn R, Kang K (1999) Phys Rev B 60:6007CrossRefGoogle Scholar
  58. 58.
    Krasheninnikov AV, Elsin F (2000) Surf Sci 519:454Google Scholar
  59. 59.
    Winter HP, Aumayr F (1999) J Phys B: At Mol Opt Phys 32: R39CrossRefGoogle Scholar
  60. 60.
    Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in matter 1. Pergamon, New YorkGoogle Scholar
  61. 61.
    Hersam MC and Chung Y-W (2003) Proc Natl Acad Sci 100:12531CrossRefGoogle Scholar
  62. 62.
    Albrecht TR and Quate CF (1988) J Vac Sci Technol A 6:271CrossRefGoogle Scholar
  63. 63.
    Morita S, Wiesendanger R, Meyer E (2002) (eds) Noncontact atomic force microscopy. Springer, New YorkGoogle Scholar
  64. 64.
    Giessibl FJ (2003) Rev Mod Phys 75:949CrossRefGoogle Scholar
  65. 65.
    Hölscher H, Allers W, Schwarz UD, Schwarz A, Wiesendanger R (2000) Phys Rev B 62:6967CrossRefGoogle Scholar
  66. 66.
    Hembacher S, Giessibl FJ, Mannhart J, Quate CF (2003) Proc Nat Acad Sci 100:12539CrossRefGoogle Scholar
  67. 67.
    Bitensky IS, Murakhmetov MN, Parilis ES (1979) Sov Phys Tech Phys 25:618Google Scholar
  68. 68.
    Schneider DH, Briere MA, McDonald J, Biersack J (1993) Radiat Eff Def Sol 127:113Google Scholar
  69. 69.
    Hayderer G, Schmid M, Varga P, Winter HP, Aumayr F (1999) Rev Sci Instrum 70:3696CrossRefGoogle Scholar
  70. 70.
    Townsend P (1983) In: Behrisch R (ed) Sputtering by particle bombardment II. Berlin, Heidelberg, New York, p 147Google Scholar
  71. 71.
    Varga P, Neidhard T, Sporn M, Libiseller G, Schmid M, Aumayr F, Winter HP (1997) Phys Scr T73:307Google Scholar
  72. 72.
    Leitner M, Wutte D, Brandstötter J, Aumayr F, Winter HP (1994) Rev Sci Instrum 65:1091CrossRefGoogle Scholar
  73. 73.
    Bedrossian PJ, de la Rubia TD (1998) J Vac Sci Technol A 16:1043CrossRefGoogle Scholar
  74. 74.
    Giessibl FJ, Hembacher S, Bielefeldt H, Mannhart J (2000) Science 289:422CrossRefGoogle Scholar
  75. 75.
    Duke CB (1996) Chem Rev 96:1237CrossRefGoogle Scholar
  76. 76.
    Hug HJ, Lantz MA, Abdurixit A, van Schendel PJA, Hoffmann R, Kappenberger P, Baratoff A, Giessibl FJ, Hembacher S, Bielefeldt H, Mannhart J (2001) Science 291:2509CrossRefGoogle Scholar
  77. 77.
    Huang M, Cuma M, Liu F (2003) Phys Rev Lett 90:256101CrossRefGoogle Scholar
  78. 78.
    Hembacher S, Giessibl FJ, Mannhart J (2004) Science 305:380CrossRefGoogle Scholar
  79. 79.
    Manassen Y, Hamers RJ, Demuth JE, Castellano AJ jun (1989) Phys Rev Lett 62:2531CrossRefGoogle Scholar
  80. 80.
    Durkan C, Welland ME (2002) Appl Phys Lett 80:458CrossRefGoogle Scholar
  81. 81.
    Wrachtrup J, von Borczyskowski C, Bernard J, Orritt M, Brown R (1993) Nature 363:244CrossRefGoogle Scholar
  82. 82.
    Köhler J, Disselhorst JAJM, Donckers MCJM, Groenen EJJ, Schmidt J, Moerner WE (1993) Nature 363:242CrossRefGoogle Scholar
  83. 83.
    Jelezko F, Popa I, Gruber A, Tietz C, Wrachtrup J, Nizovtsev A, Kilin S (2002) Appl Phys Lett 81:2160CrossRefGoogle Scholar
  84. 84.
    Elzerman JM, Hanson R, Willems van Beveren LH, Witkamp B, Vandersypen LMK, Kouwenhoven LP (2004) Nature 430:431CrossRefGoogle Scholar
  85. 85.
    Xiao M, Martin I, Yablonovitch E, Jiang HW (2004) Nature 430:435CrossRefGoogle Scholar
  86. 86.
    Rugar D, Budakian R, Mamin HJ, Chui BW (2004) Nature 430:329CrossRefGoogle Scholar
  87. 87.
    Balatsky AV, Martin I (2002) Quant Inf Proc 1:355CrossRefGoogle Scholar
  88. 88.
    Manoharan HC (2002) Nature 416:24CrossRefGoogle Scholar
  89. 89.
    Sidles JA (1991) Appl Phys Lett 58:2854CrossRefGoogle Scholar
  90. 90.
    Rugar D, Yannoni CS, Sidles JA (1992) Nature 360:563CrossRefGoogle Scholar
  91. 91.
    Sidles JA (1992) Phys Rev Lett 68:1124CrossRefGoogle Scholar
  92. 92.
    Sidles JA, Garbini JL, Bruland KJ, Rugar D, Züger O, Hoen S, Yannoni CS (1995) Rev Mod Phys 67:249CrossRefGoogle Scholar
  93. 93.
    Hammel PC, Pelekhov DV, Wigen PE, Gosnell TR, Midzor MM, Roukes ML (2003) Proc IEEE 91:789CrossRefGoogle Scholar
  94. 94.
    Mozyrsky D, Martina I, Pelekhov D, PC Hammel (2003) Appl Phys Lett 82:1278CrossRefGoogle Scholar
  95. 95.
    Ciobanu L, Seeber DA, Pennington CH (2002) J Magn Reson 158:178CrossRefGoogle Scholar
  96. 96.
    Blank A, Dunnam CR, Borbat PP, Freed JH (2003) J Magn Reson 165:11CrossRefGoogle Scholar
  97. 97.
    Stokstad E (2004) Science 305:322CrossRefGoogle Scholar
  98. 98.
    Berman GP, Doolen GD, Hammel PC, Tsifrinovich VI (2000) Phys Rev B 61:14694CrossRefGoogle Scholar
  99. 99.
    Pelekhov DV, Martin I, Suter A, Reagor, DW, Hammel PC (2002) Proc SPIE 4656:1CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ille C. Gebeshuber
    • 1
    • 2
  • Manfred Drack
    • 3
  • Friedrich Aumayr
    • 2
  • Hannspeter Winter
    • 2
  • Friedrich Franek
    • 1
    • 4
  1. 1.Austrian Center of Competence for TribologyWiener NeustadtAustria
  2. 2.Institut für Allgemeine PhysikTechnische Universität WienWienAustria
  3. 3.GrAT Center for Appropriate TechnologyTechnische Universität WienWienAustria
  4. 4.Institut für Sensor- und AktuatorsystemeTechnische Universität WienWienAustria

Personalised recommendations