AFM Applications for Analysis of Fullerene-Like Nanoparticles

  • Lev Rapoport
  • Armen Verdyan
Part of the NanoScience and Technology book series (NANO)

21.8 Conclusions

  1. 1.

    Friction and wear of quasi-spherical fullerene-like solid lubricant nanoparticles of WS2 and MoS2 have been studied.

  2. 2.

    It was shown that these nanoparticles are capable of withstanding high hydrostatic pressure, caused by compression without suffering heavy damage.

  3. 3.

    The IF nanoparticles added to oil improve the tribological properties of the steel and ceramic pair mainly under severe contact conditions in comparison to layered solid lubricant powder and a pure oil.

  4. 4.

    Based on the AFM, TEM and SEM study it was shown that the islands of thin sheets of destroyed IF nanoparticles provide low friction and wear under high contact pressure.

  5. 5.

    With load increasing, the IF nanoparticles penetrate into the interface, protecting the rubbed surfaces from a direct contact and thus increase the wearability of friction pairs. Molecular sheets of WS2 from the delaminated IF nanoparticles, which reside in the valleys of the rough surfaces cover the contact spots and thus decrease the number of adhered spots under friction.



Atomic Force Microscopy Tribological Property Solid Lubricant Contact Spot Mixed Lubrication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kroto HW, Heath JR, O’Brein SC, Curl RF, Smalley RE (1985) Nature 318:162CrossRefGoogle Scholar
  2. 2.
    Iijima S, (1991) Nature 354:56CrossRefGoogle Scholar
  3. 3.
    Bhushan B, Gupta BK, Van Cleef GW, Capp C, Coe JV (1993) Appl Phys Lett 62:3253CrossRefGoogle Scholar
  4. 4.
    Bhushan B, Gupta BK, Van Cleef GW, Capp C, Coe JV (1993) Tribol Trans 36:573Google Scholar
  5. 5.
    Schwarz UD, Allers W, Gensterblum G, Wiesendanger R (1995) Phys Rev B 52:14976CrossRefGoogle Scholar
  6. 6.
    Campbell SE, Luengo G, Srdanov VI, Wudi F, Israelachvili JN (1996) Nature 382:520CrossRefGoogle Scholar
  7. 7.
    Thundat T, Warmack RJ, Ding D, Compton RN (1993) Appl Phys Lett 63:891CrossRefGoogle Scholar
  8. 8.
    Blau PJ, Haberlin CE (1992) Thin Solid Films 219:129CrossRefGoogle Scholar
  9. 9.
    Nakagawa H, Kibi S, Tagawa M, Umeno M, Ohmae N (2000) Wear 238:45CrossRefGoogle Scholar
  10. 10.
    Tenne R (2001) In: Kenneth D (ed) Progress in inorganic chemistry. Wiley, New York, p 269Google Scholar
  11. 11.
    Nath M, Rao CNR (2003) Dalton Trans 1:1Google Scholar
  12. 12.
    Tenne R, Margulis L, Genut M, Hodes G (1992) Nature 360:444CrossRefGoogle Scholar
  13. 13.
    Margulis L, Salitra G, Tenne R, Talianker M (1993) Nature 365:113CrossRefGoogle Scholar
  14. 14.
    Feldman Y, Wasserman E, Srolovitz DJ, Tenne R (1995) Science 267:222Google Scholar
  15. 15.
    Rapoport L, Bilik Yu, Homyonfer M, Cohen SR, Tenne R (1997) Nature 387:791CrossRefGoogle Scholar
  16. 16.
    Rapoport L, Feldman Y, Homyonfer M, Cohen H, Sloan J, Hutchison JL, Tenne R (1999) Wear 225–229:975CrossRefGoogle Scholar
  17. 17.
    Chhowalla M, Amaratunga GAJ (2000) Nature 407:164CrossRefGoogle Scholar
  18. 18.
    Cizaire L, Vacher B, Le-Mogne T, Martin JM, Rapoport L, Margolin A, Tenne R (2002) Surf Coat Technol 160:282CrossRefGoogle Scholar
  19. 19.
    Hu JJ, Bultman JE, Zabinski JS (2004) Tribol Lett 17:543CrossRefGoogle Scholar
  20. 20.
    Schwarz US, Komura S, Safran SA (2000) Europhys Lett 50:762CrossRefGoogle Scholar
  21. 21.
    Srolovitz DJ, Safran SA Homyonfer M, Tenne R (1995) Phys Rev Let 74:1779CrossRefGoogle Scholar
  22. 22.
    Bhushan B (1999) (ed) Handbook of micro/nano tribology. CRC, New YorkGoogle Scholar
  23. 23.
    B Bhushan (2003) (ed) Springer handbook of nanotechnology. Springer, Berlin Heidelberg New YorkGoogle Scholar
  24. 24.
    Golan Y, Drummond C, Homyonfer M, Feldman Y, Tenne R, Israelachvili J (1999) Adv Mater 11:934CrossRefGoogle Scholar
  25. 25.
    Golan Y, Drummond C, Israelashvili J, Tenne R (2000) Wear 245:190CrossRefGoogle Scholar
  26. 26.
    Drummond C, Alcantar NA, Israelachvili J, Tenne R, Golan Y (2001) Adv Funct Mater 11:348CrossRefGoogle Scholar
  27. 27.
    Rapoport L, Leshchinsky V, Lapsker I, Volovik Yu, Nepomnyashchy O, Lvovsky M, Popovitz-Biro R, Feldman Y, Tenne R (2003) Wear 255:785CrossRefGoogle Scholar
  28. 28.
    Cohen SR, Rapoport L, Ponomarev EA, Cohen H, Tsirlina T, Tenne R, Levy-Clement C (1998) Thin Solid films 324:190CrossRefGoogle Scholar
  29. 29.
    Leshchinsky V, Popovitz-Biro R, Gartsman K, Rosentsveig R, Rosenberg Yu, Tenne R, Rapoport L (2004) J Mater Sci 39:4119CrossRefGoogle Scholar
  30. 30.
    Zhu Q, Sekine T, Brigatti KS, Firth S, Tenne R, Krotto HW, Walton DRM (2003) J Am Chem Soc 125:1329CrossRefGoogle Scholar
  31. 31.
    Schwarz UD, Köster P, Wiesendanger R (1996) Rev Sci Instr 67:2560CrossRefGoogle Scholar
  32. 32.
    Cameron A (1966) Principles of lubrication. Longmans, New YorkGoogle Scholar
  33. 33.
    Spikes HA, Olver AV (2002) In: Bartz WJ (ed) Lubricants, materials, and lubrication engineering. Proceedings of 13th international colloquium on tribology, vol 1, Ostfildern, p 19Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Lev Rapoport
    • 1
  • Armen Verdyan
    • 1
  1. 1.Department of ScienceHolon Academic Institute of TechnologyHolonIsrael

Personalised recommendations