‘Adequate’ Hemodynamics: A Question of Time?

  • L. Gattinoni
  • F. Valenza
  • E. Carlesso
Conference paper
Part of the Update in Intensive Care and Emergency Medicine book series (volume 42)


Base Excess Energy Charge Energy Failure Proton Leak Oxygen Debt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shoemaker WC, Appel PL, Kram HB, Waxman K, Lee TS (1988) Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 94:1176–1186Google Scholar
  2. 2.
    Brunelle JK, Chandel NS (2002) Oxygen deprivation induced cell death: an update. Apoptosis 7:475–482CrossRefPubMedGoogle Scholar
  3. 3.
    Rolfe DF, Brown GC (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77:731–758PubMedGoogle Scholar
  4. 4.
    Walford GA, Moussignac RL, Scribner AW, Loscalzo J, Leopold JA (2004) Hypoxia potentiates nitric oxide-mediated apoptosis in endothelial cells via peroxynitrite-induced activation of mitochondria-dependent and-independent pathways. J Biol Chem 279:4425–4432CrossRefPubMedGoogle Scholar
  5. 5.
    Elfering SL, Haynes VL, Traaseth NJ, Ettl A, Giulivi C (2004) Aspects, mechanism, and biological relevance of mitochondrial protein nitration sustained by mitochondrial nitric oxide synthase. Am J Physiol Heart Circ Physiol 286:H22–H29CrossRefPubMedGoogle Scholar
  6. 6.
    Boutilier RG (2001) Mechanisms of cell survival in hypoxia and hypothermia. J Exp Biol 204:3171–3181PubMedGoogle Scholar
  7. 7.
    Hochachka PW, Lutz PL (2001) Mechanism, origin, and evolution of anoxia tolerance in animals. Comp Biochem Physiol B Biochem Mol Biol 130:435–459CrossRefPubMedGoogle Scholar
  8. 8.
    Hand SC, Hardewig I (1996) Downregulation of cellular metabolism during environmental stress: mechanisms and implications. Annu Rev Physiol 58:539–563CrossRefPubMedGoogle Scholar
  9. 9.
    St-Pierre J, Brand MD, Boutilier RG (2000) The effect of metabolic depression on proton leak rate in mitochondria from hibernating frogs. J Exp Biol 203 Pt 9:1469–1476PubMedGoogle Scholar
  10. 10.
    Boutilier RG, St-Pierre J (2002) Adaptive plasticity of skeletal muscle energetics in hibernating frogs: mitochondrial proton leak during metabolic depression. J Exp Biol 205:2287–2296PubMedGoogle Scholar
  11. 11.
    Buck LT, Hochachka PW (1993) Anoxic suppression of Na(+)-K(+)-ATPase and constant membrane potential in hepatocytes: support for channel arrest. Am J Physiol 265:R1020–R1025PubMedGoogle Scholar
  12. 12.
    Cherniack NS (2004) Oxygen sensing: applications in humans. J Appl Physiol 96:352–358CrossRefPubMedGoogle Scholar
  13. 13.
    Vallet B (2002) Endothelial cell dysfunction and abnormal tissue perfusion. Crit Care Med 30:S229–S234CrossRefPubMedGoogle Scholar
  14. 14.
    Vallet B (1998) Vascular reactivity and tissue oxygenation. Intensive Care Med 24:3–11CrossRefPubMedGoogle Scholar
  15. 15.
    Wenger RH (2000) Mammalian oxygen sensing, signalling and gene regulation. J Exp Biol 203 Pt 8:1253–1263PubMedGoogle Scholar
  16. 16.
    Semenza GL (2000) Expression of hypoxia-inducible factor 1: mechanisms and consequences. Biochem Pharmacol 59:47–53CrossRefPubMedGoogle Scholar
  17. 17.
    Seagroves TN, Ryan HE, Lu H, et al (2001) Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol Cell Biol 21:3436–3444CrossRefPubMedGoogle Scholar
  18. 18.
    Ratcliffe PJ, O’Rourke JF, Maxwell PH, Pugh CW (1998) Oxygen sensing, hypoxia-inducible factor-1 and the regulation of mammalian gene expression. J Exp Biol 201Pt 8:1153–1162PubMedGoogle Scholar
  19. 19.
    Schumacker PT, Chandel N, Agusti AG (1993) Oxygen conformance of cellular respiration in hepatocytes. Am J Physiol 265:L395–L402PubMedGoogle Scholar
  20. 20.
    Braems G, Jensen A (1991) Hypoxia reduces oxygen consumption of fetal skeletal muscle cells in monolayer culture. J Dev Physiol 16:209–215PubMedGoogle Scholar
  21. 21.
    Arthur PG, Giles JJ, Wakeford CM (2000) Protein synthesis during oxygen conformance and severe hypoxia in the mouse muscle cell line C2C12. Biochim Biophys Acta 1475:83–89PubMedGoogle Scholar
  22. 22.
    Casey TM, Pakay JL, Guppy M, Arthur PG (2002) Hypoxia causes downregulation of protein and RNA synthesis in noncontracting Mammalian cardiomyocytes. Circ Res 90:777–783CrossRefPubMedGoogle Scholar
  23. 23.
    Gnaiger E (2003) Oxygen conformance of cellular respiration.A perspective of mitochondrial physiology. Adv Exp Med Biol 543:39–55PubMedGoogle Scholar
  24. 24.
    Laffey JG, O’Croinin D, McLoughlin P, Kavanagh BP (2004) Permissive hypercapnia - role in protective lung ventilatory strategies. Intensive Care Med 30:347–356CrossRefPubMedGoogle Scholar
  25. 25.
    Gores GJ, Nieminen AL, Wray BE, Herman B, Lemasters JJ (1989) Intracellular pH during “chemical hypoxia” in cultured rat hepatocytes. Protection by intracellular acidosis against the onset of cell death. J Clin Invest 83:386–396PubMedGoogle Scholar
  26. 26.
    Koop A, Piper HM (1992) Protection of energy status of hypoxic cardiomyocytes by mild acidosis. J Mol Cell Cardiol 24:55–65CrossRefPubMedGoogle Scholar
  27. 27.
    Reipschlager A, Portner HO (1996) Metabolic depression during environmental stress: the role of extracellular versus intracellular pH in Sipunculus nudus. J Exp Biol 199:1801–1807PubMedGoogle Scholar
  28. 28.
    Atsma DE, Bastiaanse EM, Van der Valk L, Van der Laarse A (1996) Low external pH limits cell death of energy-depleted cardiomyocytes by attenuation of Ca2+ overload. Am J Physiol 270:H2149–H2156PubMedGoogle Scholar
  29. 29.
    Margaria R, Edwards HT, Dill DB (1933) The possible mechanisms of contracting and paying the oxygen debt and the role of lactic acid in muscular contraction. AmJ Physiol 106:689–713Google Scholar
  30. 30.
    di Prampero PE, Ferretti G (1999) The energetics of anaerobic muscle metabolism: a reappraisal of older and recent concepts. Respir Physiol 118:103–115CrossRefPubMedGoogle Scholar
  31. 31.
    Siegel JH, Fabian M, Smith JA, et al (2003) Oxygen debt criteria quantify the effectiveness of early partial resuscitation after hypovolemic hemorrhagic shock. J Trauma 54:862–880PubMedGoogle Scholar
  32. 32.
    Rixen D, Raum M, Holzgraefe B, Sauerland S, Nagelschmidt M, Neugebauer EA (2001) A pig hemorrhagic shock model: oxygen debt and metabolic acidemia as indicators of severity. Shock 16:239–244PubMedGoogle Scholar
  33. 33.
    Boekstegers P, Weidenhofer S, Pilz G, Werdan K (1991) Peripheral oxygen availability within skeletal muscle in sepsis and septic shock: comparison to limited infection and cardiogenic shock. Infection 19:317–323CrossRefPubMedGoogle Scholar
  34. 34.
    Boekstegers P, Weidenhofer S, Kapsner T, Werdan K (1994) Skeletal muscle partial pressure of oxygen in patients with sepsis. Crit Care Med 22:640–650PubMedGoogle Scholar
  35. 35.
    Boekstegers P, Weidenhofer S, Zell R, et al (1994) Changes in skeletal muscle pO2 after administration of anti-TNF alpha-antibody in patients with severe sepsis: comparison to interleukin-6 serum levels, APACHE II, and Elebute scores. Shock 1:246–253PubMedGoogle Scholar
  36. 36.
    Neviere R, Mathieu D, Chagnon JL, Lebleu N, Millien JP, Wattel F (1996) Skeletal muscle microvascular blood flow and oxygen transport in patients with severe sepsis. Am J Respir Crit Care Med 153:191–195PubMedGoogle Scholar
  37. 37.
    James JH, Luchette FA, McCarter FD, Fischer JE (1999) Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet 354:505–508CrossRefPubMedGoogle Scholar
  38. 38.
    Bundgaard H, Kjeldsen K, Suarez Krabbe K, et al (2002) Endotoxemia stimulates skeletal muscle Na+-K+-ATPase and raises blood lactate under aerobic conditions in humans. Am J Physiol Heart Circ Physiol 284:H1028–H1034PubMedGoogle Scholar
  39. 39.
    McCarter FD, Nierman SR, James JH, et al (2002) Role of skeletal muscle Na+-K+ ATPase activity in increased lactate production in sub-acute sepsis. Life Sci 70:1875–1888CrossRefPubMedGoogle Scholar
  40. 40.
    Chrusch C, Bautista E, Jacobs HK, et al (2002) Blood pH level modulates organ metabolism of lactate in septic shock in dogs. J Crit Care 17:188–202CrossRefPubMedGoogle Scholar
  41. 41.
    Levraut J, Ichai C, Petit I, Ciebiera JP, Perus O, Grimaud D (1902) Low exogenous lactate clearance as an early predictor of mortality in normolactatemic critically ill septic patients. Crit Care Med 31:705–710Google Scholar
  42. 42.
    Gutierrez G, Wulf ME (1996) Lactic acidosis in sepsis: a commentary. Intensive Care Med 22:6–16CrossRefPubMedGoogle Scholar
  43. 43.
    Stewart PA (1983) Modern quantitative acid-base chemistry. Can J Physiol Pharmacol 61:1444–1461PubMedGoogle Scholar
  44. 44.
    Jin X, Weil MH, Sun S, Tang W, Bisera J, Mason EJ (1998) Decreases in organ blood flows associated with increases in sublingual PCO2 during hemorrhagic shock. J Appl Physiol 85:2360–2364PubMedGoogle Scholar
  45. 45.
    Weil MH, Nakagawa Y, Tang W, et al (1999) Sublingual capnometry: a new noninvasive measurement for diagnosis and quantitation of severity of circulatory shock. Crit Care Med 27:1225–1229CrossRefPubMedGoogle Scholar
  46. 46.
    Gutierrez G (2004) A mathematical model of tissue-blood carbon dioxide exchange during hypoxia. Am J Respir Crit Care Med 169:525–533CrossRefPubMedGoogle Scholar
  47. 47.
    Crouser ED, Julian MW, Blaho DV, Pfeiffer DR (2002) Endotoxin-induced mitochondrial damage correlates with impaired respiratory activity. Crit Care Med 30:276–284CrossRefPubMedGoogle Scholar
  48. 48.
    Brealey D, Brand M, Hargreaves I, et al (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360:219–223CrossRefPubMedGoogle Scholar
  49. 49.
    Welty-Wolf KE, Simonson SG, Huang YC, Fracica PJ, Patterson JW, Piantadosi CA (1996) Ultrastructural changes in skeletal muscle mitochondria in gram-negative sepsis. Shock 5:378–384PubMedGoogle Scholar
  50. 50.
    Simonson SG, Welty-Wolf K, Huang YT, et al (1994) Altered mitochondrial redox responses in gram negative septic shock in primates. Circ Shock 43:34–43PubMedGoogle Scholar
  51. 51.
    Hansen PD, Coffey SC, Lewis FR Jr (1994) The effects of adrenergic agents on oxygen delivery and oxygen consumption in normal dogs. J Trauma 37:283–291PubMedGoogle Scholar
  52. 52.
    Bhatt SB, Hutchinson RC, Tomlinson B, Oh TE, Mak M (1992) Effect of dobutamine on oxygen supply and uptake in healthy volunteers. Br J Anaesth 69:298–303PubMedGoogle Scholar
  53. 53.
    Ensinger H, Weichel T, Lindner KH, Grunert A, Ahnefeld FW (1993) Effects of norepinephrine, epinephrine, and dopamine infusions on oxygen consumption in volunteers. Crit Care Med 21:1502–1508PubMedGoogle Scholar
  54. 54.
    Uusaro A, Hartikainen J, Parviainen M, Takala J (1995) Metabolic stress modifies the thermogenic effect of dobutamine in man. Crit Care Med 23:674–680CrossRefPubMedGoogle Scholar
  55. 55.
    Karzai W, Lotte A, Gunnicker M, Vorgrimler-Karzai UM, Priebe HJ (1996) Dobutamine increases oxygen consumption during constant flow cardiopulmonary bypass. Br J Anaesth 76:5–8PubMedGoogle Scholar
  56. 56.
    De Backer D, Berre J, Moraine JJ, Melot C, Vanfraechem J, Vincent JL (1996) Effects of dobutamine on the relationship between oxygen consumption and delivery in healthy volunteers: comparison with sodium nitroprusside. Clin Sci (Lond) 90:105–111PubMedGoogle Scholar
  57. 57.
    Scheeren TW, Arndt JO (2000) Different response of oxygen consumption and cardiac output to various endogenous and synthetic catecholamines in awake dogs. Crit Care Med 28:3861–3868CrossRefPubMedGoogle Scholar
  58. 58.
    Haupt MT, Gilbert EM, Carlson RW (1985) Fluid loading increases oxygen consumption inseptic patients with lactic acidosis. Am Rev Respir Dis 131:912–916PubMedGoogle Scholar
  59. 59.
    Gilbert EM, Haupt MT, Mandanas RY, Huaringa AJ, Carlson RW (1986) The effect of fluid loading, blood transfusion, and catecholamine infusion on oxygen delivery and consumption in patients with sepsis. Am Rev Respir Dis 134:873–878PubMedGoogle Scholar
  60. 60.
    Vincent JL, Roman A, De Backer D, Kahn RJ (1990) Oxygen uptake/supply dependency. Effects of short-term dobutamine infusion. Am Rev Respir Dis 142:2–7PubMedGoogle Scholar
  61. 61.
    Qiu HB, Yang Y, Zhou SX, Liu SH, Zheng RQ (2001) Prognostic value of dobutamine stress test in patients with septic shock. Acta Pharmacol Sin 22:71–75PubMedGoogle Scholar
  62. 62.
    De Backer D, Berre J, Zhang H, Kahn RJ, Vincent JL (1993) Relationship between oxygen uptake and oxygen delivery in septic patients: effects of prostacyclin versus dobutamine. Crit Care Med 21:1658–1664PubMedGoogle Scholar
  63. 63.
    Vallet B, Chopin C, Curtis SE, et al (1993) Prognostic value of the dobutamine test in patients with sepsis syndrome and normal lactate values: a prospective, multicenter study. Crit Care Med 21:1868–1875PubMedGoogle Scholar
  64. 64.
    De Backer D, Moraine JJ, Berre J, Kahn RJ, Vincent JL (1994) Effects of dobutamine on oxygen consumption in septic patients. Direct versus indirect determinations. Am J Respir Crit Care Med 150:95–100PubMedGoogle Scholar
  65. 65.
    Rhodes A, Lamb FJ, Malagon I, Newman PJ, Grounds RM, Bennett ED (1999) A prospective study of the use of a dobutamine stress test to identify outcome in patients with sepsis, severe sepsis, or septic shock. Crit Care Med 27:2361–2366CrossRefPubMedGoogle Scholar
  66. 66.
    Bland RD, Shoemaker WC, Abraham E, Cobo JC (1985) Hemodynamic and oxygen transport patterns in surviving and nonsurviving postoperative patients. Crit Care Med 13:85–90PubMedGoogle Scholar
  67. 67.
    Heyland DK, Cook DJ, King D, Kernerman P, Brun-Buisson C (1996) Maximizing oxygen delivery in critically ill patients: a methodologic appraisal of the evidence. Crit Care Med 24:517–524CrossRefPubMedGoogle Scholar
  68. 68.
    Kern JW, Shoemaker WC (2002) Meta-analysis of hemodynamic optimization in high-risk patients. Crit Care Med 30:1686–1692CrossRefPubMedGoogle Scholar
  69. 69.
    Rivers E, Nguyen B, Havstad S, et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377CrossRefPubMedGoogle Scholar
  70. 70.
    Gattinoni L, Brazzi L, Pelosi P, et al (1995) A trial of goal-oriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group. N Engl J Med 333:1025–1032CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • L. Gattinoni
  • F. Valenza
  • E. Carlesso

There are no affiliations available

Personalised recommendations