Skip to main content

Arterial Pulse Pressure Variation During Positive Pressure Ventilation and Passive Leg Raising

  • Conference paper
Functional Hemodynamic Monitoring

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICMSOFT,volume 42))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morgan BC, Martin WE, Hornbein TF, Crawford EW, Guntheroth WG (1966) Hemodynamic effects of intermitent positive pressure ventilation. Anesthesiology 27:584–590

    PubMed  Google Scholar 

  2. Harken A.H., Brennan MF, Smith B, Barsamian EM (1974) The hemodynamic response to positive end-expiratory ventilation in hypovolemic patients. Surgery 76:786–793

    PubMed  Google Scholar 

  3. Dhainaut JF, Devaux JY, Monsallier JF, Brunet F, Villemant D, Huyghebaert MF (1986) Mechanisms ofdecreased left ventricular preload during continuous positive pressure ventilation in ARDS. Chest 90:74–80

    PubMed  Google Scholar 

  4. Michard F, Chemla D, Richard C, et al (1999) Clinical use ofrespiratory changes in arterial pressure to monitor the hemodynamic effects of PEEP. Am J Respir Crit Care Med 159:935–939

    PubMed  Google Scholar 

  5. Magder S, Georgiadis G, Cheong T (1992) Respiratory variations in right atrial pressure predict the response to fluid challenge. J Crit Care 7:76–85

    Google Scholar 

  6. Squara P, Dhainaut JF, Schremmer B, Sollet JP, Bleichner G (1990) Decreased paradoxic pulse from increased venous return in severe asthma. Chest 97:377–383

    PubMed  Google Scholar 

  7. Fessler HE, Brower RG, Shapiro EP, Permutt S (1993) Effects of positive end-expiratory pressure and body position on pressure in the thoracic great veins. Am Rev Respir Dis 148:1657–1664

    PubMed  Google Scholar 

  8. Vieillard-Baron A, Augarde R, Prin S, Page B, Beauchet A, Jardin F( 2001) Influence of superior vena caval zone condition on cyclic changes in right ventricular outflow during respiratory support. Anesthesiology 95:1083–1088

    Article  PubMed  Google Scholar 

  9. Jardin F, Delorme G, Hardy A, Auvert B, Beauchet A, Bourdarias JP (1990) Reevaluation of hemodynamic consequences ofpositive pressure ventilation: emphasis on cyclic right ventricular afterloading by mechanical lung inflation. Anesthesiology 72:966–970

    PubMed  Google Scholar 

  10. Vieillard-Baron A, Loubieres Y, Schmitt JM, Page B, Dubourg O, Jardin F (1999) Cyclic changes in right ventricular output impedance during mechanical ventilation. J Appl Physiol 87:1644–1650

    PubMed  Google Scholar 

  11. Permutt S, Howell JBL, Proctor D, Riley RL (1961) Effects of lung inflation on static pressurevolume characteristics of pulmonary vessels. J Appl Physiol 16:64–70

    PubMed  Google Scholar 

  12. Theres H, Binkau J, Laule M, et al (1999) Phase-related changes in right ventricular cardiac output under volume-controlled mechanical ventilation with positive end-expiratory pressure. Crit Care Med 27:953–958

    Article  PubMed  Google Scholar 

  13. Permutt S, Wise RA, Brower RG (1989) How changes in pleural and alveolar pressure cause changes in afterload and preload. In: Scharf SM, Cassidy SS (eds) Heart-Lung Interactions in Health and Disease. Marcel Dekker, New York, pp 243–250

    Google Scholar 

  14. Jardin F, Farcot JC, Gueret P, Prost JF, Ozier Y, Bourdarias JP (1983) Cyclic changes in arterial pulse during respiratory support. Circulation 68:266–274

    Google Scholar 

  15. Brower R, Wise RA, Hassapoyannes C, Bronberger-Barnea B, Permutt S (1985) Effects of lung inflation on lung blood volume and pulmonary venous flow. J Appl Physiol 58:954–963

    Article  PubMed  Google Scholar 

  16. Vieillard-Baron A, Chergui K, Augarde R, et al (2003) Cyclic changes in arterial pulse during respiratory support revisited by Doppler echocardiography. Am J Respir Crit Care Med 168:671–676

    Article  PubMed  Google Scholar 

  17. Pinsky MR, Matuschak GM, Klain M (1985) Determinantsofcardiac augmentation by elevations in intrathoracic pressure. J Appl Physiol 58:1189–1198

    PubMed  Google Scholar 

  18. Szold A, Pizov R, Segal E, Perel A (1989) The effect of tidal volume and intravascular volume state on systolic pressure variation in ventilated dogs. Intensive Care Med 15:368–371

    Article  PubMed  Google Scholar 

  19. Pizov R, Cohen M, Weiss Y, Segal E, Cotev S, Perel A (1996) Positive end-expiratory pressureinduced hemodynamic changes are reflected in the arterial pressure waveform. Crit Care Med 24:1381–1387

    Article  PubMed  Google Scholar 

  20. Tavernier B, Makhotine O, Lebuffe G, Dupont J, Scherpereel P (1998) Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 89:1313–1321

    Article  PubMed  Google Scholar 

  21. Guyton AC (1991) Textbook ofMedical Physiology, 8th edn. WB Saunders, Philadelphia, pp 221–233

    Google Scholar 

  22. Magder S (1998) More respect for the PVC. Intensive Care Med 24:651–653

    Article  PubMed  Google Scholar 

  23. Michard F, Teboul JL (2000) Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care 4:282–289

    Article  PubMed  Google Scholar 

  24. Michard F, Teboul JL (2000) Respiratory changes in arterial pressure in mechanically ventilated patients. In: Vincent JL (ed) Yearbook ofintensive care and emergency medicine, Springer, Berlin, pp 696–704

    Google Scholar 

  25. Perel A (1998) Assessing fluid responsiveness by the systolic pressure variation in mechanically ventilated patients. Anesthesiology 89:1309–1310

    Article  PubMed  Google Scholar 

  26. Denault AY, Gasior TA, Gorcsan J 3rd, Mandarino WA, Deneault LG, Pinsky MR (1999) Determinants ofaortic pressure variation during positive-pressure ventilation in man. Chest 116:176–186

    Article  PubMed  Google Scholar 

  27. Michard F, Boussat S, Chemla D, et al (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162:134–138

    PubMed  Google Scholar 

  28. Bendjelid K, Suter PM, Romand JA (2004) The respiratory change in preejection period: a new method to predict fluid responsiveness. J Appl Physiol 96:337–342

    Article  PubMed  Google Scholar 

  29. Michard F, Teboul JL (2002) Predicting fluid responsiveness in ICU patients. A critical analysis of the evidence. Chest 121:2000–2008

    Article  PubMed  Google Scholar 

  30. Bendjelid K, Romand JA (2003) Fluid responsiveness in mechanically ventilated patients: a review of indices used in intensive care. Intensive Care Med 29:352–360

    Article  PubMed  Google Scholar 

  31. Gunn SR, Harrigan PWJ, Denault AY, Gorcsan J 3rd, Teboul JL, Pinsky MR (2002) Does pulse pressure variation correlate withconventional measures ofpreload? Crit CareShock 5:1–9

    Google Scholar 

  32. Schulman DS, Biondi JW, Matthay R, Baeash PG, Zaret BL, Soufer R (1988) Effect of positive end-expiratory pressure on right ventricular performance: importance of baseline right ventricular function. Am J Med 84:57–67

    Article  PubMed  Google Scholar 

  33. Reuter DA, Bayerlein J, Goepfert MS, et al (2003) Influence of tidal volume on left ventricular stroke volume variation measured by pulse contour analysis in mechanically ventilated patients. Intensive Care Med 29:476–480

    PubMed  Google Scholar 

  34. Michard F, Teboul JL, Richard C (2003) Influence of tidal volume on stroke volume variation. Does it really matter? Intensive Care Med 29:1613

    Article  PubMed  Google Scholar 

  35. Eichacker PQ, Gerstenberger EP, Banks SM, Cui X, Natanson C (2002) Meta-analysis of acute lung injury and acute respiratory distress syndrome trials testing low tidal volumes. Am J Respir Crit Care Med 166:1510–1514

    Article  PubMed  Google Scholar 

  36. Rutlen DL, Wackers FJT, Zaret BL (1981) Radionuclide assessment ofperipheral intravascular capacity: a technique to measure intravascular volumes changes in the capacitance circulation in man. Circulation 64:146–152

    PubMed  Google Scholar 

  37. Reich DL, Konstadt SN, Raissi S, Hubbard M, Thys DM (1989) Trendelenburg position and passive leg raising do not significantly improve cardiopulmonary performance in the anesthetized patient with coronary artery disease. Crit Care Med 17:313–317

    PubMed  Google Scholar 

  38. Thomas M, Shillingford J (1965) The circulatory response to a standard postural change in ischaemic heart disease. Br Heart J 27:17–27

    PubMed  Google Scholar 

  39. Rocha P, Lemaigre D, Leroy M, De Zutterre D, Liot F (1987) Nitroglycerin-induced decrease of carbon monoxide diffusion capacity in acute myocardial infarction reversed by elevating legs. Crit Care Med 15:131–133

    PubMed  Google Scholar 

  40. Takagi S, Yokota M, Iwase M, et al (1989) The important role oflef t ventricular relaxation and left atrial pressure in the left ventricular filling velocity profile. Am Heart J 118:954–962

    Article  PubMed  Google Scholar 

  41. Guyton AC, Lindsey AW, Abernathy B, Richardson T (1957) Venous return at various right atrial pressures and the normal venous return curve. Am J Physiol 189:609–615

    PubMed  Google Scholar 

  42. Chihara E, Hashimoto S, Kinoshita T, et al (1992) Elevated mean systemic filling pressure due to intermittent positive-pressure ventilation. Am J Physiol 262:H1116–H1121

    PubMed  Google Scholar 

  43. Wong DH, Tremper KK, Zaccari J, et al (1988) Acute cardiovascular response to passive leg raising. Crit Care Med 16:123–125

    PubMed  Google Scholar 

  44. Wong DH, O’Connor D, Tremper KK, et al (1989) Changes in cardiac output after acute blood loss and position change in man. Crit Care Med 17:979–983

    PubMed  Google Scholar 

  45. Gaffney FA, Bastian BC, Thal ER, et al (1982) Passive leg raising does not produce a significant or sustained autotransfusion effect. J Trauma 22:190–193

    PubMed  Google Scholar 

  46. Boulain T, Achard JM, Teboul JL, Richard C, Perrotin D, Ginies G (2002) Changes in blood pressure induced by passive leg raising predict response to fluid loading in critically ill patients. Chest 121:1245–1252

    Article  PubMed  Google Scholar 

  47. Haller M, Zollner C, Briegel J, Forst H (1995) Evaluation ofa new continuous thermodilution cardiac output monitor in critically ill patients: a prospective criterion standard study. Crit Care Med 23:860–866

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Teboul, JL., Monnet, X., Richard, C. (2005). Arterial Pulse Pressure Variation During Positive Pressure Ventilation and Passive Leg Raising. In: Pinsky, M.R., Payen, D. (eds) Functional Hemodynamic Monitoring. Update in Intensive Care and Emergency Medicine, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26900-2_26

Download citation

  • DOI: https://doi.org/10.1007/3-540-26900-2_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22349-8

  • Online ISBN: 978-3-540-26900-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics