Arterial Pressure Variation during Positive-pressure Ventilation

  • A. Perel
  • S. Preisman
  • H. Berkenstadt
Part of the Update in Intensive Care and Emergency Medicine book series (volume 42)


Right Ventricular Fluid Responsiveness Pulse Pressure Variation Stroke Volume Variation Pulmonary Artery Occlusion Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Michard F, Teboul JL (2002) Predicting fluid responsiveness in ICUpatients: a critical analysis of the evidence. Chest 121:2000–2008CrossRefPubMedGoogle Scholar
  2. 2.
    Michard F, Teboul JL (2000) Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care 4:282–289CrossRefPubMedGoogle Scholar
  3. 3.
    Perel A (1991) Cardiovascular assessment by pressure waveform analysis. In Annual Refresher Course Lectures, American Society of AnesthesiologistsGoogle Scholar
  4. 4.
    Rooke GA (1995) Systolic pressure variation as an indicator of hypovolemia. Curr Opin Anesthesiol 8:511–515Google Scholar
  5. 5.
    Stoneham MD (1999) Less is more…using systolic pressure variation to assess hypovolemia. Br J Anaesth 83:550–551PubMedGoogle Scholar
  6. 6.
    Perel A (1998) Assessing fluid responsiveness by the systolic pressure variation in mechanically ventilated patients. Anesthesiology 89:1309–1310CrossRefPubMedGoogle Scholar
  7. 7.
    Gunn SR, Pinsky MR (2001) Implications of arterial pressure variation in patients in the intensive care unit. Curr Opin Crit Care 7:212–217CrossRefPubMedGoogle Scholar
  8. 8.
    Pinsky MR (2001) Functional hemodynamic monitoring: applied physiology at the bedside. In: Vincent JL (ed) Yearbook of Intensive Care and Emergency Medicine, Springer Verlag, pp 537–552Google Scholar
  9. 9.
    Pinsky MR (2002) Functional hemodynamic monitoring. Intensive Care Med 28:386–8CrossRefPubMedGoogle Scholar
  10. 10.
    Michard F, Teboul JL (2002) Detection of fluid responsiveness. In: Vincent JL (ed) Yearbook of Intensive Care and Emergency Medicine, Springer Verlag, pp 553–563Google Scholar
  11. 11.
    Pinsky MR (2003) Probing the limits of arterial pulse contour analysis to predict preload responsiveness. Anesth Analg 96:1245–1247CrossRefPubMedGoogle Scholar
  12. 12.
    Bendjelid K, Romand JA (2003) Fluid responsiveness in mechanically ventilated patients: a review of indices used in intensive care. Intensive Care Med 29:352–360CrossRefPubMedGoogle Scholar
  13. 13.
    Perel A (2003). The value of functional hemodynamic parameters in hemodynamic monitoring of ventilated patients (Editorial). Anaesthetist 52:1003–4CrossRefGoogle Scholar
  14. 14.
    Magder S (2004) Clinical usefulness of respiratory variations in arterial pressure. Am J Respir Crit Care Med 169: 151–155CrossRefPubMedGoogle Scholar
  15. 15.
    Fukamachi K, Irie H, Massiello A, et al (1992). Effects of mechanical ventilation and spontaneous respiration on hemodynamics in calves with total artificial hearts. ASAIO J 38:M493–496PubMedGoogle Scholar
  16. 16.
    Jardin F, Farcot JC, Gueret P, Prost JF, Ozier Y, Bourdarias JP (1983) Cyclic changes in arterial pulse during respiratory support. Circulation 68:266–274PubMedGoogle Scholar
  17. 17.
    Vieillard-Baron A, Augarde R, Prin S, Page B, Beauchet A, Jardin F (2001) Influence of superior vena caval zone conditions on cyclic changes in right ventricular outflow during respiratory support. Anesthesiology 95:1083–1088CrossRefPubMedGoogle Scholar
  18. 18.
    Sellgren J, Soderstrom S, Johansson G, Biber B, Haggmark S, Ponten J (2003) Preload changes by positive pressure ventilation can be used for assessment of left ventricular systolic function. Acta Anaesthesiol Scand 47:541–548CrossRefPubMedGoogle Scholar
  19. 19.
    Van den Berg PCM, Jansen JRC, Pinsky MR (2002) Effect of positive pressure on venous return in volume loaded cardiac surgical patients. J Appl Physiol 92: 1223–1231PubMedGoogle Scholar
  20. 20.
    Vieillard-Baron A, Loubieres Y, Schmitt JM, Page B, Dubourg O, Jardin F (1999) Cyclic changes in right ventricular output impedance during mechanical ventilation. J Appl Physiol 87:1644–1650PubMedGoogle Scholar
  21. 21.
    Massumi RA, Mason DT, Zakauddin V, Zelis R, Otero J, Amsterdam EA (1973). Reversed pulsus paradoxus. N Eng’ J Med 289:1272–1275Google Scholar
  22. 22.
    Robotham JL, Cherry D, Mitzner W, Rabson JL, Lixfeld W, Bromberger-Barnea B (1983) A re-evaluation of the hemodynamic consequences on intermittent positive pressure ventilation. Crit Care Med 11:783–793PubMedGoogle Scholar
  23. 23.
    Vieillard-Baron A, Chergui K, Augarde R, et al (2003) Cyclic changes in arterial pulse during respiratory support revisited by Doppler echocardiography. Am J Respir Crit Care Med 168:671–676CrossRefPubMedGoogle Scholar
  24. 24.
    Brower R, Wise RA, Hassapoyannes C, Bromberger-Barnea B, Pemutt S (1985) Effect of lung inflation on lung blood volume and pulmonary venous flow. J Appl Physiol 58:954–963CrossRefPubMedGoogle Scholar
  25. 25.
    Perel A, Pizov R, Cotev C (1987) Systolic blood pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology 67:498–502PubMedGoogle Scholar
  26. 26.
    Denault AY, Gasior TA, Gorscan J, Mandarino WA, Deneault LG, Pinsky MR (2000) Determinants of aortic pressure variation during positive pressure ventilation in man. Chest 116:176–186CrossRefGoogle Scholar
  27. 27.
    Michard F, Chemla D, Richard C, et al (1999) Clinical use of respiratory changes in arterial pulse pressure to monitor the hemodynamic effects of PEEP. Am J Respir Crit Care Med 159:935–939PubMedGoogle Scholar
  28. 28.
    Michard F, Boussat S, Chemla D, et al (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 62:134–138Google Scholar
  29. 29.
    Berkenstadt H, Friedman Z, Preisman S, Perel A (2001) The stroke volume variation (SVV) correlates with the stroke volume and the systolic pressure variation (SPV) during hemorrhage and retransfusion in dogs. Intensive Care Med 27:S258 (abst)CrossRefGoogle Scholar
  30. 30.
    Reuter D, Felbinger TW, Kilger F, Schmidt C, Lamm P, Goetz AE (2002) Optimizing fluid therapy in mechanically ventilated patients after cardiac surgery by on-line monitoring of left ventricular stroke volume variations: a comparison to aortic systolic pressure variations. Br J Anaesth 88:124–126CrossRefPubMedGoogle Scholar
  31. 31.
    Beaussier M, Coriat P, Perel A, et al (1995) Determinants of systolic pressure variation after vascular surgery. J Cardiothoracic Vasc Anesth 9:547–551Google Scholar
  32. 32.
    Feissel M, Michard F, Mangin I, Ruyer O, Faller JP, Teboul JL (2001) Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest 119:867–873CrossRefPubMedGoogle Scholar
  33. 33.
    Slama M, Masson H, Teboul JL, et al (2002) Respiratory variations of aortic VTI: a new index of hypovolemia and fluid responsiveness. Am J Physiol Heart Circ Physiol 283:H1729–1733PubMedGoogle Scholar
  34. 34.
    Coyle JP, Teplick RS, Long MC (1983) Respiratory variations in systemic arterial pressure as an indicator of volume status. Anesthesiology 59:A53 (abst)Google Scholar
  35. 35.
    Pizov R, Yaari Y, Perel A (1988) The systolic pressure variation is greater during hemorrhage than during sodium-nitroprusside induced hypotension in ventilated dogs. Anesth Analg 67:170–174PubMedGoogle Scholar
  36. 36.
    Pizov R, Ya’ari Y, Perel A (1989) The arterial pressure waveform during acute ventricular failure and synchronized external chest compression. Anesth Analg 68:150–156PubMedGoogle Scholar
  37. 37.
    Szold A, Pizov R, Segal E, Perel A (1989) The effect of tidal volume and intravasculer volume state on systolic pressure variation in ventilated dogs. Intensive Care Med 15:368–371CrossRefPubMedGoogle Scholar
  38. 38.
    Pizov R, Cohen M, Weiss Y, Segal E, Cotev S, Perel A (1996) Positive end-expiratory pressureinduced hemodynamic changes are reflected in the arterial pressure waveform. Crit Care Med 24:1381–1387CrossRefPubMedGoogle Scholar
  39. 39.
    Preisman S, Pfeiffer U, Lieberman N, Perel A (1997) New monitors of intravascular volume: a comparison of arterial pressure waveform analysis and the intrathoracic blood volume. Intensive Care Med 23:651–657CrossRefPubMedGoogle Scholar
  40. 40.
    Dalibon N, Schlumberger S, Saada M, Fischler M, Riou B (1999) Hemodynamic assessment of hypovolemia under general anesthesia in pigs submitted to graded hemorrhage and retransfusion. Br J Anaesth 82:97–103PubMedGoogle Scholar
  41. 41.
    Preisman S, DiSegni E, Vered Z, Perel A (2002) Left ventricular preload and function during graded hemorrhage and retranfusion in pigs: analysis of arterial pressure waveform and correlation with echocardiography. Br J Anaesth 88:716–718CrossRefPubMedGoogle Scholar
  42. 42.
    Coriat P, Vrillon M, Perel A, et al (1994) A comparison of systolic blood pressure variations and echocardiographic estimates of end-diastolic left ventricular size in patients after aortic surgery. Anesth Analg 78:46–53PubMedGoogle Scholar
  43. 43.
    Rooke GA, Schwid HA, Shapira Y (1995) The effect of graded hemorrhage and intravascular volume replacement on systolic pressure variation in humans during mechanical and spontaneous ventilation. Anesth Analg 80:925–932CrossRefPubMedGoogle Scholar
  44. 44.
    Tavernier B, Makhotine O, Lebuffe G, Dupont J, Scherpereel P (1998) Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 89:1313–1321CrossRefPubMedGoogle Scholar
  45. 45.
    Ornstein E, Eidelman LA, Drenger B, Elami A, Pizov R (1998) Systolic pressure variation predicts the response to acute blood loss. J Clin Anesth 10:137–140CrossRefPubMedGoogle Scholar
  46. 46.
    Shamir M, Eidelman LA, Floman Y, Kaplan L, Pizov R (1999) Pulse oximetry plethysmographic waveform during changes in blood volume. Br J Anaesth 82:178–181PubMedGoogle Scholar
  47. 47.
    Boulain T, Achard JM, Teboul JL, Richard C, Perrotin D, Ginies G (2002) Changes in blood pressure induced by passive leg raising predict response to fluid loading in critically ill patients. Chest 121:1245–1252CrossRefPubMedGoogle Scholar
  48. 48.
    Marik PE (1993) The systolic blood pressure variation as an indicator of pulmonary capillary wedge pressure in ventilated patients. Anaesth Intensive Care 21:405–408PubMedGoogle Scholar
  49. 49.
    Benjelid K, Suter PM, Romand JA (2004) The respiratory change in preejection period: a new method to predict fluid responsiveness. J Appl Physiol 96:337–342CrossRefPubMedGoogle Scholar
  50. 50.
    Bennett-Guerrero E, Kahn RA, Moskowitz DM, Falcucci O, Bodian CA (2002) Comparison of arterial systolic pressure variation with other clinical parameters to predict the response to fluid challenges during cardiac surgery. Mt Sinai J Med 69:96–100PubMedGoogle Scholar
  51. 51.
    Berkenstadt H, Margalit N, Hadani M, et al (2001) Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Analg 92:984–989PubMedGoogle Scholar
  52. 52.
    Reuter DA, Felbinger TW, Schmidt C, et al (2002) Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med 28:392–398CrossRefPubMedGoogle Scholar
  53. 53.
    Reuter DA, Kirchner A, Felbinger TW, et al (2003) Usefulness of left ventricular stroke volume variation to assess fluid responsiveness in patients with reduced cardiac function. Crit Care Med 31:1399–1404CrossRefPubMedGoogle Scholar
  54. 54.
    Reuter DA, Bayerlein J, Goepfert MS, et al (2003) Influence of tidal volume on left ventricular stroke volume variation measured by pulse contour analysis in mechanically ventilated patients. Intensive Care Med 29:476–480PubMedGoogle Scholar
  55. 55.
    Wiesenack C, Prasser C, Rodig G, Keyl C (2003) Stroke volume variation as an indicator of fluid responsiveness using pulse contour analysis in mechanically ventilated patients. Anesth Analg 96:1254–1257CrossRefPubMedGoogle Scholar
  56. 56.
    Perel A, Preisman S, Baer R, Shneider A (1995) Respiratory Systolic Variation Test reflects preload during graded hemorrhage in ventilated dogs. Br J Anaesth 74(Suppl 1):A134 (abst)Google Scholar
  57. 57.
    Perel A, Minkovich L, Abiad M, Coriat P, Viars P (1995) Respiratory systolic variation test — A new method for assessing preload. Br J Anaesth 74(Suppl 1):A137 (abst)Google Scholar
  58. 58.
    Perel A, Baer R, Minkovich L (1996) Respiratory systolic variation test reflects the slope of the LV function curve during LV failure in ventilated dogs. Br J Anaesth 76(Suppl 2):39 (abst)Google Scholar
  59. 59.
    De Backer D (2003) Stroke volume variations. Minerva Anestesiol 69:285–288PubMedGoogle Scholar
  60. 60.
    Schwid HA, Rooke GA (2000) Systolic blood pressure at end-expiration measured by the automated systolic pressure variation monitor is equivalent to systolic blood pressure during apnea. J Clin Monit Comput 16:115–120CrossRefPubMedGoogle Scholar
  61. 61.
    Soncini M, Manfred G, Redaelli A, et al (2002) A computerized method to measure systolic pressure variation (SPV) in mechanically ventilated patients. J Clin Monit Comput 17:141–146CrossRefPubMedGoogle Scholar
  62. 62.
    Morelot-Panzini C, Lefort Y, Derenne JP, Similowski T (2003) Simplified method to measure respiratory-related changes in arterial pulse pressure in patients receiving mechanical ventilation. Chest 124:665–670CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • A. Perel
  • S. Preisman
  • H. Berkenstadt

There are no affiliations available

Personalised recommendations