Splanchnic Blood Flow

  • J. Creteur
Conference paper
Part of the Update in Intensive Care and Emergency Medicine book series (volume 42)


Mucosal Blood Flow Ischemic Hypoxia Splanchnic Blood Flow Gastric Tonometry Haldane Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dahn MS, Lange P, Lobdell K, Hans B, Jacobs LA, Mitchell RA (1987) Splanchnic and total body oxygen consumption differences in septic and injured patients. Surgery 101:69–80PubMedGoogle Scholar
  2. 2.
    Mythen MG, Purdy G, Mackie IJ, McNally T, Webb AR, Machin SJ (1993) Postoperative multiple organ dysfunction syndrome associated with gut mucosal hypoperfusion, increased neutrophil degranulation and C1-esterase inhibitor depletion. Br J Anaesth 71:858–863PubMedGoogle Scholar
  3. 3.
    Soong CV, Blair PH, Halliday MI, et al (1993) Endotoxaemia, the generation of the cytokines and their relationship to intramucosal acidosis of the sigmoid colon in elective abdominal aortic aneurysm repair. Eur J Vasc Surg 7: 534–539CrossRefPubMedGoogle Scholar
  4. 4.
    Soong CV, Blair PH, Halliday MI, et al (1994) Bowel ischaemia and organ impairment in elective abdominal aortic aneurysm repair. Br J Surg 81:965–968PubMedGoogle Scholar
  5. 5.
    Soong CV, Halliday MI, Barclay GR, Hood JM, Rowlands BJ, BarrosD’Sa AA (1997) Intramucosal acidosis and systemic host responses in abdominal aortic aneurysm surgery. Crit Care Med 25:1472–1479CrossRefPubMedGoogle Scholar
  6. 6.
    Landow L, Andersen LW (1994) Splanchnic ischemia and its role in multiple organ failure. Acta Anaesthesiol Scand 38:626–639PubMedGoogle Scholar
  7. 7.
    Okazaki K, Miyazaki M, Onishi S, Ito K (1986) Effect of food intake and various extrinsic hormones on portal blood flow in patient with liver cirrhosis demonstrated by pulsed Doppler with the Octoson. Scand J Gastroenterol 21:1029–1038PubMedGoogle Scholar
  8. 8.
    Payen DM, Fratacci MD, Dupuy P, et al (1990) Portal and hepatic blood flow measurements of human transplanted liver by implanted Doppler probes: interest for early complications and nutrition. Surgery 107:417–427PubMedGoogle Scholar
  9. 9.
    Shepherd AP, Riedel GL (1982) Continuous measurement of intestinal mucosal blood flow by laser-Doppler velocimetry. Am J Physiol 242:G668–G672PubMedGoogle Scholar
  10. 10.
    Lunde OC, Kvernebo K, Larsen S (1988) Evaluation of endoscopic laser Doppler flowmetry for measurement of human gastric blood flow. Methodologic aspects. Scand J Gastroenterol 23:1072–1078PubMedGoogle Scholar
  11. 11.
    Nevière R, Mathieu MD, Chagnon JL, Lebleu N, Wattel F (1996) The contrasting effects of dobutamine and dopamine on gastric mucosal perfusion in septic patients. Am J Respir Crit Care Med 154:1684–1688PubMedGoogle Scholar
  12. 12.
    Uusaro A, Ruokonen E, Takala J (1995) Estimation of splanchnic blood flow by the Fick principle in man and problems in the use of indocyanine green. Cardiovasc Res 30:106–112CrossRefPubMedGoogle Scholar
  13. 13.
    Gottlieb ME, Sarfeh IJ, Stratton H, Goldman ML, Newell JC, Shah DM (1983) Hepatic perfusion and splanchnic oxygen consumption in patients postinjury. J Trauma 23:836–843PubMedGoogle Scholar
  14. 14.
    Sakka SG, Reinhart K, Meier-Hellmann A (2000) Comparison between invasive and non-invasive measurement of indocyanine-green plasma disappearance rate in critically ill patients with mechanical ventilation and stable hemodynamics. Intensive Care Med 26:1553–1556CrossRefPubMedGoogle Scholar
  15. 15.
    Kainuma M, Nakashima K, Sakuma I, et al (1994) Hepatic venous hemoglobin oxygen saturation predicts liver dysfunction after hepatectomy. Anesthesiology 76:379–386Google Scholar
  16. 16.
    Dahn MS, Lange MP, Jacobs LA (1988) Central mixed and splanchnic venous oxygen saturation monitoring. Intensive Care Med 14:373–378PubMedGoogle Scholar
  17. 17.
    De Backer D, Creteur J, Noordally O, Smail N, Gulbis B, Vincent JL (1998) Does hepatosplanchnic VO2/DO2 dependency exist in critically ill septic patients? AmJ Respir Crit Care Med 157:1219–1225Google Scholar
  18. 18.
    De Backer D, Creteur J, Silva E, Vincent JL (1998) The gradient between mixed-venous and hepatic venous saturation is not related to outcome in septic patients. Am J Respir Crit Care Med 157:A297 (Abst)Google Scholar
  19. 19.
    Ruokonen E, Uusaro A, Alhava E, Takala J (1997) The effect of dobutamine infusion on splanchnic blood flow and oxygen transport in patients with acute pancreatitis. IntensiveCare Med 23:732–737CrossRefGoogle Scholar
  20. 20.
    Takano H, Matsuda H, Kadoba K, et al (1994) Monitoring of hepatic venous oxygen saturation for predicting acute liver dysfunction after Fontan operations. J Thorac Cardiovasc Surg 108:700–708PubMedGoogle Scholar
  21. 21.
    Matsuda H, Covino E, Hirose H, et al (1988) Acute liver dysfunction after modified Fontan operation for complex cardiac lesions. J Thorac Cardiovasc Surg 96:219–226PubMedGoogle Scholar
  22. 22.
    Trager K, Radermacher P, Georgiff M (1996) PEEP and hepatic metabolic performance in septic shock. Intensive Care Med 22:1274–1275CrossRefPubMedGoogle Scholar
  23. 23.
    De Backer D, Creteur J, Silva E, Vincent JL (2003) Effects of dopamine, norepinephrine and epinephrine on the splanchnic circulation in septic shock: which is the best? Crit Care Med 31:1659–1667CrossRefPubMedGoogle Scholar
  24. 24.
    Meier-Hellmann A, Reinhart K, Bredle DL, Specht M, Spies CD, Hannemann L (1997) Epinephrine impairs splanchnic perfusion in septic shock. Crit Care Med 25:399–404CrossRefPubMedGoogle Scholar
  25. 25.
    Reinelt H, Radermacher P, Fischer G, et al (1997) Effects of a dobutamine-induced increase in splanchnic blood flow on hepatic metabolic activity in patients with septic shock. Anesthesiology 86:818–824CrossRefPubMedGoogle Scholar
  26. 26.
    Silva E, De Backer D, Creteur J, Vincent JL (1998) Effects of vasoactive drugs on gastric intramucosal pH. Crit Care Med 26:1749–1758CrossRefPubMedGoogle Scholar
  27. 27.
    Creteur J, De Backer D, Vincent JL (1999) Does gastric tonometry monitor splanchnic perfusion? Crit Care Med 27:2480–2484CrossRefPubMedGoogle Scholar
  28. 28.
    De Backer D, Creteur J, Silva E, Vincent JL (2001) The hepatosplanchnic area is not a common source of lactate in patients with severe sepsis. Crit Care Med 29:256–261CrossRefPubMedGoogle Scholar
  29. 29.
    De Backer D (2003) Lactic acidosis. Intensive Care Med 29:699–702PubMedGoogle Scholar
  30. 30.
    Dahn MS, Mitchell RA, Lange MP, Smith S, Jacobs LA (1995) Hepatic metabolic response to injury and sepsis. Surgery 117:520–530PubMedGoogle Scholar
  31. 31.
    Mythen MG, Woolf R, Noone RB (1998) Gastric mucosal tonometry: towards new methods and applications. Anasthesiol Intensivmed Notfallmed Schmerzther 33(suppl 2):S85–S90PubMedGoogle Scholar
  32. 32.
    Morgan TJ, Venkatesh B, Endre ZH (1999) Accuracy of intramucosal pH calculated from arterial bicarbonate and the Henderson-Hasselbalch equation: assessment using simulated ischemia. Crit Care Med 27:2495–2499CrossRefPubMedGoogle Scholar
  33. 33.
    Pernat A, Weil MH, Tang W, et al (1999) Effects of hyper-and hypoventilation on gastric and sublingual PCO2. J Appl Physiol 87:933–937PubMedGoogle Scholar
  34. 34.
    Schlichtig R, Mehta N, Gayowski TJ (1996) Tissue-arterial PCO2 difference is a better marker of ischemia than intramural pH (pHi) or arterial pH-pHi difference. J Crit Care 11:51–56CrossRefPubMedGoogle Scholar
  35. 35.
    Vincent JL, Creteur J (1998) Gastric mucosal pH is definitely obsolete — Please tell us more about gastric mucosal PCO2. Crit Care Med 26:1479–1480CrossRefPubMedGoogle Scholar
  36. 36.
    Takala J, Parviainen I, Siloaho M, Ruokonen E, Hamalainen E (1994) Saline PCO2 is an important source of error in the assessment of gastric intramucosal pH. Crit Care Med 22:1877–1879PubMedGoogle Scholar
  37. 37.
    Knichwitz G, Kuhmann M, Brodner G, Mertes N, Goeters C, Brussels T (1996) Gastric tonometry: precision and reliability are improved by a phosphate buffered solution. Crit Care Med 24:512–516CrossRefPubMedGoogle Scholar
  38. 38.
    Heard SO, Helsmoortel CM, Kent JC, Shahnarian A, Fink MP (1991) Gastric tonometry in healthy volunteers: effect of ranitidine on calculated intramural pH. Crit Care Med 19: 271–274PubMedGoogle Scholar
  39. 39.
    Calvet X, Baigorri F, Duarte M, et al (1998) Effect of ranitidine on gastric intramucosal pH in critically ill patients. Intensive Care Med 24:12–17CrossRefPubMedGoogle Scholar
  40. 40.
    Calvet X, Baigorri F, Duarte M, Saura P, Royo C, Joseph D(1997) Effect of sucralfate on gastric intramucosal pH in critically ill patients. Intensive Care Med 23:738–742CrossRefPubMedGoogle Scholar
  41. 41.
    Marik PE, Lorenzana A (1996) Effect of tube feedings on the measurement of gastric intramucosal pH. Crit Care Med 24:1498–1500CrossRefPubMedGoogle Scholar
  42. 42.
    Levy B, Perrigault PF, Gawalkiewicz P, et al (1998) Gastric versus duodenal feeding and gastric tonometric measurements. Crit Care Med 26:1991–1994CrossRefPubMedGoogle Scholar
  43. 43.
    Kolkman JJ, Steverink PJGM, Groeneveld ABJ, Meuwissem SGM (1998) Characteristics of time-dependent PCO2 tonometry in the normal human stomach. Br J Anaesth 81:669–675PubMedGoogle Scholar
  44. 44.
    Chien, S (1967) Role of the sympathetic nervous system in hemorrhage. Physiol Rev 47:214–288PubMedGoogle Scholar
  45. 45.
    Price HL, Deutsch S, Marshall BE, Stephen GW, Behar MG, Neufeld GR (1966) Hemodynamic and metabolic effects of hemorrhage in man, with particular reference to the splanchnic circulation. Circ Res 18:469–474PubMedGoogle Scholar
  46. 46.
    Vatner SF (1974) Effects of hemorrhage on regional blood flow distribution in dogs and primates. J Clin Invest 54:225–235PubMedGoogle Scholar
  47. 47.
    Guzman JA, Lacoma JF, Kruse JA (1998) Relationship between systemic oxygen supply dependency and gastric intramucosal PCO2 during progressive hemorrhage. J Trauma 44:696–700PubMedGoogle Scholar
  48. 48.
    Hamilton-Davies C, Mythen MG, Salmon JB, Jacobson D, Shukla A, Webb AR (1997) Comparison of commonly used clinical indicators of hypovolaemia with gastrointestinal tonometry. Intensive Care Med 23:276–281.CrossRefPubMedGoogle Scholar
  49. 49.
    Edouard AR, Degremont AC, Duranteau J, Pussard E, Berdeaux A, Samii K (1994) Heterogeneous regional vascular responses to simulated transient hypovolemia in man. Intensive Care Med 20:414–420CrossRefPubMedGoogle Scholar
  50. 50.
    Schlichtig R, Bowles SA (1994) Distinguishing between aerobic and anaerobic appearance of dissolved CO2 in intestine during low flow. J Appl Physiol 76:2443–2451PubMedGoogle Scholar
  51. 51.
    Zhang H, Rogiers P, De Backer D, et al (1996) Regional arteriovenous differences in PCO2 and pH can reflect critical organ oxygen delivery during endotoxemia. Shock 5:349–356PubMedGoogle Scholar
  52. 52.
    Bustamante SA, Jodal M, Nilsson NJ, Lundgren O (1989) Evidence for a countercurrent exchanger in the intestinal villi of suckling swine. Acta Physiol Scand 137: 207–213PubMedGoogle Scholar
  53. 53.
    Neviere R, Chagnon JL, Teboul JL, Vallet B, Wattel F (2002) Small intestine intramucosal PCO(2) and microvascular blood flow during hypoxic and ischemic hypoxia. Crit Care Med 30:379–384PubMedGoogle Scholar
  54. 54.
    Dubin A, Estenssoro E, Baran M, et al (2003) Intramucosal-arterial PCO2 gap fails to reflect intestinal dysoxia in anemic hypoxia. Intensive Care Med 28:S127 (abst)Google Scholar
  55. 55.
    Fink MP (1998) Cythopathic hypoxia: mitochondrial dysfunction as a potential mechanism contributing to organ failure in sepsis. In: Sibbald WJ, Messmer K, Fink MP (eds) Update in Intensive Care and Emergency Medicine. Vol 33: Tissue Oxygenation in Acute Medicine. Springer-Verlag, Berlin, pp 128–137Google Scholar
  56. 56.
    VanderMeer TJ, Wang H, Fink MP (1995) Endotoxemia causes ileal mucosal acidosis in the absence of mucosal hypoxia in a normodynamic porcine model of septic shock. Crit Care Med 23:1217–1225CrossRefPubMedGoogle Scholar
  57. 57.
    Revelly JP, Ayuse A, Brienza N, Fessler HE, Robotham JL (1996) Endotoxic shock alters distribution of blood flow within the intestinal wall. Crit Care Med 24:1345–1351CrossRefPubMedGoogle Scholar
  58. 58.
    Kellum JA, Rico P, Garuba AK, Pinsky MR (2000) Accuracy of mucosal pH and mucosal-arterial carbon dioxide tension for detecting mesenteric hypoperfusion in acute canine endotoxemia. Crit Care Med 28:462–466CrossRefPubMedGoogle Scholar
  59. 59.
    Parviainen I, Ruokonen E, Takala J (1995) Dobutamine-induced dissociation between changes in splanchnic blood flow and gastric intramucosal pH after cardiac surgery. Br J Anaesth 74:277–282PubMedGoogle Scholar
  60. 60.
    Thoren A, Jakob SM, Pradl R, Elam M, Rickstem SE, Takala J (2000) Jejunal and gastric mucosal perfusion versus splanchnic blood flow and metabolism: an observational study on postcardiac surgical patients. Crit Care Med 28:3649–3654CrossRefPubMedGoogle Scholar
  61. 61.
    Bonatii J, Gruber E, Schwarz B, Waldenberger P, Friesenecker B, Furtner B (1996) Effects of short-term endotoxemia and dopamine on mucosal oxygenation in porcine jejunum. Am J Physiol 270:G667–675PubMedGoogle Scholar
  62. 62.
    Nevière R, Chagnon JL, Vallet B, et al (1997) Dobutamine improves gastrointestinal mucosal blood flow in a porcine model of endotoxic shock. Crit Care Med 25:1371–1377CrossRefPubMedGoogle Scholar
  63. 63.
    Vallet B, Lund N, Curtis SE, Kelly D, Cain SM (1994) Gut and muscle PO2 in endotoxemic dogs during shock and resuscitation. J Appl Physiol 76:796–800CrossRefGoogle Scholar
  64. 64.
    Farquhar I, Martin CM, Lam C, Potter R, Ellis CG, Sibbald WJ (1996) Decreased capillary density in vivo in bowel mucosa of rats with normotensive sepsis. J Surg Res 61:190–196CrossRefPubMedGoogle Scholar
  65. 65.
    Lam C, Tyml K, Martin C, Sibbald W (1994) Microvascular perfusion is impaired in a rat model of normotensive sepsis. J Clin Invest 94:2077–2083PubMedGoogle Scholar
  66. 66.
    Schmidt H, Secchi A, Wellmann R, et al (1996) Effect of endotoxemia on intestinal villus microcirculation in rats. J Surg Res 61:521–526CrossRefPubMedGoogle Scholar
  67. 67.
    Drazenovic R, Samsel RW, Wylam ME, Doerschuk CM, Schumaker PT (1992) Regulation of perfused capillary density in canine intestinal mucosa during endotoxemia. J Appl Physiol 72:259–265CrossRefPubMedGoogle Scholar
  68. 68.
    Tugtekin I, Radermacher P, Theisen M, et al (2001) Increased ileal-mucosal-arterial PCO2 gap is associated with impaired villus microcirculation in endotoxic pigs. Intensive Care Med 27:757–766CrossRefPubMedGoogle Scholar
  69. 69.
    Elizalde JI, Hernandez C, Llach J, et al (1998) Gastric intramucosal acidosis in mechanically ventilated patients: role of mucosal blood flow. Crit Care Med 26:827–832CrossRefPubMedGoogle Scholar
  70. 70.
    Creteur J, De Backer D, Vincent JL (1999) A dobutamine test can disclose hepatosplanchnic hypoperfusion in septic patients. Am J Respir Crit Care Med 160:839–845PubMedGoogle Scholar
  71. 71.
    Maynard N, Bihari D, Beale R, et al (1993) Assessment of splanchnic oxygenation by gastric tonometry in patients with acute circulatory failure. JAMA 270:1203–1210CrossRefPubMedGoogle Scholar
  72. 72.
    Bennett-Guerrero E, Panah MH, Bodian CA, et al (2000) Automated detection of gastric luminal partial pressure of carbon dioxide during cardiovascular surgery using the Tonocap. Anesthesiology 92:38–45CrossRefPubMedGoogle Scholar
  73. 73.
    Levy B, Gawalkiewicz P, Vallet B, Briancon S, Nace L, Bollaert PE (2003) Gastric capnometry with air-automated tonometry predicts outcome in critically ill patients. Crit Care Med 31:474–480CrossRefPubMedGoogle Scholar
  74. 74.
    Doglio GR, Pusajo JF, Egurrola A, et al (1992) Gastric mucosal pH as a prognostic index of mortality in critically ill patients. Crit Care Med 19:1037–1040Google Scholar
  75. 75.
    Friedman G, Berlot G, Kahn RJ, Vincent JL (1995) Combined measurements of blood lactate levels and gastric intramucosal pH in patients with severe sepsis. Crit Care Med 23:1184–1193CrossRefPubMedGoogle Scholar
  76. 76.
    Marik PE (1993) Gastric intramucosal pH: a better predictor of multiorgan dysfunction syndrome than oxygen-derived variables in patients with sepsis. Chest 104:225–229PubMedGoogle Scholar
  77. 77.
    Walley KR, Friesen BP, Humer MF, Phang PT (1998) Small bowel tonometry is more accurate than gastric tonometry in detecting gut ischemia. J Appl Physiol 85:1770–1777PubMedGoogle Scholar
  78. 78.
    Knuesel R, Jakob S, Brander L, Bracht H, Siegenthaler A, Takala J (2003) Changes in regional blood flow and PCO2 gradients during isolated abdominal aortic blood flow reduction. Intensive Care Med 29:2255–2265CrossRefPubMedGoogle Scholar
  79. 79.
    Jakob SM, Kosonen P, Ruokonen E, Parviainen I, Takala J (1999) The Haldane effect-an alternative explanation for increasing gastric mucosal PCO2 gradients? Br J Anaesth 83:740–746PubMedGoogle Scholar
  80. 80.
    De Backer D, Creteur J, Vincent JL (2000) The Haldane effect-an explanation for increasing gastric mucosal PCO2 gradients? Br J Anaesth 85:169Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • J. Creteur

There are no affiliations available

Personalised recommendations