Advertisement

Biochemical and Molecular Aspects of Haploid Embryogenesis

  • Kim Boutilier
  • Martijn Fiers
  • Chun-Ming Liu
  • Apolonia Lonneke H.M. van der Geest
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 56)

Keywords

Somatic Embryo Somatic Embryogenesis Zygotic Embryo Embryogenic Cell Microspore Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aharoni A, Vorst O (2002) DNA microarrays for functional plant genomics. Plant Mol Biol 48:99–118PubMedCrossRefGoogle Scholar
  2. Albani D, Robert LS, Donaldson PA, Altosaar I, Arnison PG, Fabijanski SF (1990) Characterization of a pollen-specific gene family from Brassica napus which is activated during early microspore development. Plant Mol Biol 15:605–622PubMedCrossRefGoogle Scholar
  3. Boutilier KA, Gines MJ, DeMoor JM, Huang B, Baszczynski CL, Iyer VN, Miki BL (1994) Expression of the BnmNAP subfamily of napin genes coincides with the induction of Brassica microspore embryogenesis. Plant Mol Biol 26:1711–1723PubMedCrossRefGoogle Scholar
  4. Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu CM, van Lammeren AA, Miki BL, Custers JB, van Lookeren Campagne MM (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749PubMedCrossRefGoogle Scholar
  5. Bruins MBM, Rakoczy Trojanowska M, Snijders CHA (1996) Isolated microspore culture in wheat (Triticum aestivum L): the effect of co-culture of wheat or barley ovaries on embryogenesis. Cereal Res Comm 24:401–408Google Scholar
  6. Brunel D, Froger N, Pelletier G (1999) Development of amplified consensus genetic markers (ACGM) in Brassica napus from Arabidopsis thaliana sequences of known biological function. Genome 42:387–402PubMedCrossRefGoogle Scholar
  7. Chesnokov YV, Meister A, Manteuffel R (2002) A chimeric green fluorescent protein gene as an embryogenic marker in transgenic cell culture of Nicotiana plumbaginifolia Viv. Plant Sci 162:59–77CrossRefGoogle Scholar
  8. Cock JM, McCormick S (2001) A large family of genes that share homology with CLAVATA3. Plant Physiol 126:939–942PubMedCrossRefGoogle Scholar
  9. Cordewener JHG, Hause G, Görgen E, Busink R, Hause B, Dons HJM, van Lammeren AAM, van Lookeren Campagne MM, Pechan P (1995) Changes in synthesis and localization of the 70 kDa class of heat shock proteins accompany the induction of embryogenesis in Brassica napus L. microspores. Planta 196:747–755Google Scholar
  10. Crouch ML (1982) Non-zygotic embryos of Brassica napus L. contain embryo-specific storage proteins. Planta 156:520–524CrossRefGoogle Scholar
  11. Custers JBM, Oldenhof MT, Schrauwen JAM, Cordewener JHG, Wullems GJ, van Lookeren Campagne MM (1997) Analysis of microspore-specific promoters in tobacco. Plant Mol Biol 35:689–699PubMedCrossRefGoogle Scholar
  12. Custers JBM, Cordewener JHG, Fiers MA, Maasen BTH, van Lookeren Campagne MM, Liu CM (2001) Androgenesis in Brassica; a model system to study the induction of plant embryogenesis. In: Bhojwani SS, Soh WY (eds) Current trends in the embryology of angiosperms. Kluwer, Dordrecht, pp 451–470Google Scholar
  13. De Faria Maraschin S, Lamers GEM, Wang M (2003a) Cell death and 14-3-3 proteins during the induction of barley microspore androgenesis. Biologia 58:59–68Google Scholar
  14. De Faria Maraschin S, Lamers GE, de Pater BS, Spaink HP, Wang M (2003b) 14-3-3 isoforms and pattern formation during barley microspore embryogenesis. J Exp Bot 54:1033–1043Google Scholar
  15. De Jong AJ, Cordewener J, Lo Schiavo FL, Terzi M, Vandekerckhove J, van Kammen A, de Vries S (1992) A carrot somatic embryo mutant is rescued by chitinase. Plant Cell 4:425–433PubMedGoogle Scholar
  16. De Jong AJ, Heidstra R, Spaink HP, Hartog MV, Meijer EA, Hendriks T, Lo Schiavo F, Terzi M, Bisseling T, van Kammen A, de Vries SC (1993) Rhizobium lipooligosaccharides rescue a carrot somatic embryo mutant. Plant Cell 5:615–620PubMedGoogle Scholar
  17. Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030PubMedCrossRefGoogle Scholar
  18. Dyachok JV, Tobin AE, Price NPJ, von Arnold S (2000) Rhizobial nod factors stimulate somatic embryo development in Picea abies. Plant Cell Rep 19:290–297CrossRefGoogle Scholar
  19. Dyachok JV, Wiweger M, Kenne L, von Arnold S (2002) Endogenous nod-factor-like signal molecules promote early somatic embryo development in Norway spruce. Plant Physiol 128:523–533PubMedCrossRefGoogle Scholar
  20. Egertsdotter U, von Arnold S (1995) Importance of arabinogalactan proteins for the development of somatic embryos of Norway spruce (Picea abies). Physiol Plant 93:334–345CrossRefGoogle Scholar
  21. Egertsdotter U, von Arnold S (1998) Development of somatic embryos in Norway spruce. J Exp Bot 49:155–162CrossRefGoogle Scholar
  22. Egertsdotter U, Mo Lars H, von Arnold S (1993) Extracellular proteins in embryogenic suspension cultures of Norway spruce (Picea abies). Physiol Plant 88:315–321CrossRefGoogle Scholar
  23. Eshed Y, Baum SF, Bowman JL (1999) Distinct mechanisms promote polarity establishment in carpels of Arabidopsis. Cell 99:199–209PubMedCrossRefGoogle Scholar
  24. Ferrie AMR, Palmer CE, Keller WA (1995) Haploid embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants, vol 20. Kluwer, Dordrecht, pp 309–344Google Scholar
  25. Fiers M, Hause G, Boutilier K, Casamitjana-Martinez E, Weijers D, Offringa R, van der Geest L, van Lookeren Campagne M, Liu C-M (2004) Mis-expression of the CLV3/ESR-like gene CLE19 in Arabidopsis leads to a consumption of root meristem. Gene 327:37–49PubMedCrossRefGoogle Scholar
  26. Fischer C, Neuhaus G (1996) Influence of auxin on the establishment of bilateral symmetry in monocots. Plant J 9:659–669CrossRefGoogle Scholar
  27. Fukuoka H, Tsuwamoto R, Nunome T, Ohyama A, Takahata Y (2003) Isolation and characterization of an embryogenesis-specific promoter p22a1 in Brassicaceae. In: Proc 7th Int Congr on Plant Molecular Biology, AOPC/ISPMB 2003 Congress Secretariat, Barcelona, Book of Abstracts, p 41Google Scholar
  28. Gallois JL, Woodward C, Reddy GV, Sablowski R (2002) Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Development 129:3207–3217PubMedGoogle Scholar
  29. Goralski G, Matthys Rochon E, Vergne P, Przywara L (1999) Androgenic development: a fascinating embryo formation process. Acta Biol Cracov Ser Bot 41:51–65Google Scholar
  30. Hall AE, Fiebig A, Preuss D (2002) Beyond the Arabidopsis genome: opportunities for comparative genomics. Plant Physiol 129:1439–1447PubMedCrossRefGoogle Scholar
  31. Hanai H, Matsuno T, Yamamoto M, Matsubayashi Y, Kobayashi T, Kamada H, Sakagami Y (2000) A secreted peptide growth factor, phytosulfokine, acting as a stimulatory factor of carrot somatic embryo formation. Plant Cell Physiol 41:27–32PubMedGoogle Scholar
  32. Hattori J, Boutilier K, van Lookeren Campagne MM, Miki BL (1998) A conserved BURP domain defines a novel group of plant proteins with unusual primary structures. Mol Gen Genet 259:424–428PubMedGoogle Scholar
  33. Hays DB, Reid DM, Yeung EC, Pharis RP (2000) Role of ethylene in cotyledon development of microspore-derived embryos of Brassica napus. J Exp Bot 51:1851–1859PubMedCrossRefGoogle Scholar
  34. Hays DB, Yeung EC, Pharis RP (2002) The role of gibberellins in embryo axis development. J Exp Bot 53:1747–1751PubMedCrossRefGoogle Scholar
  35. Heck GR, Perry SE, Nichols KW, Fernandez DE (1995) AGL15, a MADS domain protein expressed in developing embryos. Plant Cell 7:1271–1282PubMedCrossRefGoogle Scholar
  36. Holm PB, Knudsen S, Mouritzen P, Negri D, Olsen FL, Roue C (1994) Regeneration of fertile barley plants from mechanically isolated protoplasts of the fertilized egg cell. Plant Cell 6:531–543PubMedCrossRefGoogle Scholar
  37. Hu T, Kasha KJ (1997) Improvement of isolated microspore culture of wheat (Triticum aestivum L.) through ovary co-culture. Plant Cell Rep 16:520–525CrossRefGoogle Scholar
  38. Hueros G, Royo J, Maitz M, Salamini F, Thompson RD (1999) Evidence for factors regulating transfer cell-specific expression in maize endosperm. Plant Mol Biol 41:403–414PubMedCrossRefGoogle Scholar
  39. Jansen RC, Nap JP (2001) Genetical genomics: the added value from segregation. Trends Genet 17:388–391PubMedCrossRefGoogle Scholar
  40. Jofuku KD, den Boer BGW, van Montagu M, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211–1225PubMedCrossRefGoogle Scholar
  41. Kim HUC (1997) Characterization of three anther-specific genes isolated from Chinese cabbage. Plant Mol Biol 33:193–198PubMedGoogle Scholar
  42. Köhler F, Wenzel G (1985) Regeneration of isolated barley microspores in conditioned media and trial to characterize the responsible factor. J Plant Physiol 121:181–191Google Scholar
  43. Kreuger M, van Holst GJ (1993) Arabinogalactan proteins are essential in somatic embryogenesis of Daucus carota L. Planta 189:243–248CrossRefGoogle Scholar
  44. Kreuger M, van Holst GJ (1995) Arabinogalactan-protein epitopes in somatic embryogenesis of Daucus carota L. Planta 197:135–141CrossRefGoogle Scholar
  45. Kreuger M, van Holst GJ (1996) Arabinogalactan proteins and plant differentiation. Plant Mol Biol 30:1077–1086PubMedCrossRefGoogle Scholar
  46. Laux T (2003) The stem cell concept in plants: a matter of debate. Cell 113:281–283PubMedCrossRefGoogle Scholar
  47. Laux T, Jürgens G (1997) Embryogenesis: a new start in life. Plant Cell 9:989–1000PubMedCrossRefGoogle Scholar
  48. Laux T, Mayer KFX, Berger J, Jurgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87–96PubMedGoogle Scholar
  49. Li H, Devaux P (2001) Enhancement of microspore culture efficiency of recalcitrant barley genotypes. Plant Cell Rep 20:475–481Google Scholar
  50. Li Z, Thomas TL (1998) PEI1, an embryo-specific zinc finger protein gene required for heartstage embryo formation in Arabidopsis. Plant Cell 10:383–398PubMedGoogle Scholar
  51. Liu CM, Xu ZH, Chua NH (1993) Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5:621–630PubMedCrossRefGoogle Scholar
  52. Lotan T, Ohto M, Matsudaira Yee K, West MAL, Lo R, Kwong RW, Yamagishi K, Fischer RL, Goldberg RB, Harada JJ (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93:1195–1205PubMedCrossRefGoogle Scholar
  53. Magnard JL, Le Deunff E, Domenech J, Rogowsky PM, Testillano PS, Rougier M, Risueno MC, Vergne P, Dumas C (2000) Genes normally expressed in the endosperm are expressed at early stages of microspore embryogenesis in maize. Plant Mol Biol 44:559–574PubMedCrossRefGoogle Scholar
  54. Maluszynski M, Kasha KJ, Forster BP, Szarejko I (2003) Doubled haploid production in crop plants; a manual. Kluwer, DordrechtGoogle Scholar
  55. Matsubayashi Y, Takagi L, Sakagami Y (1997) Phytosulfokine-alpha, a sulfated pentapeptide, stimulates the proliferation of rice cells by means of specific high-and low-affinity binding sites. Proc Natl Acad Sci USA 94:13357–13362PubMedCrossRefGoogle Scholar
  56. McCabe PF, Valentine TA, Forsberg LS, Pennell RI (1997) Soluble signals from cells identified at the cell wall establish a developmental pathway in carrot. Plant Cell 9:2225–2241PubMedCrossRefGoogle Scholar
  57. Meinke DW, Franzmann LH, Nickle TC, Yeung EC (1994) Leafy Cotyledon mutants of Arabidopsis. Plant Cell 6:1049–1064PubMedCrossRefGoogle Scholar
  58. Mordhorst AP, Toonen MAJ, de Vries SC (1997) Plant embryogenesis. Crit Rev Plant Sci 16:535–576Google Scholar
  59. Ogas J, Cheng J-C, Sung RZ, Somerville C (1997) Cellular differentiation regulated by gibberellin in the Arabidopsis thaliana pickle mutant. Science 277:91–94PubMedCrossRefGoogle Scholar
  60. Ohme Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182PubMedGoogle Scholar
  61. Opsahl-Ferstad HG, Le Deunff E, Dumas C, Rogowsky PM (1997) ZmEsr, a novel endospermspecific gene expressed in a restricted region around the maize embryo. Plant J 12:235–246PubMedCrossRefGoogle Scholar
  62. Paire A, Devaux P, Lafitte C, Dumas C, Matthys Rochon E (2003) Proteins produced by barley microspores and their derived androgenic structures promote in vitro zygotic maize embryo formation. Plant Cell Tissue Organ Cult 73:167–176CrossRefGoogle Scholar
  63. Pechan PM, Smykal P (2001) Androgenesis: affecting the fate of the male gametophyte. Physiol Plant 111:1–8CrossRefGoogle Scholar
  64. Pechan PM, Bartels D, Brown DCW, Schell J (1991) Messenger-RNA and protein changes associated with induction of Brassica microspore embryogenesis. Planta 184:161–165Google Scholar
  65. Perry SE, Lehti MD, Fernandez DE (1999) The MADS-domain protein AGAMOUS-like 15 accumulates in embryonic tissues with diverse origins. Plant Physiol 120:121–129PubMedCrossRefGoogle Scholar
  66. Reynolds TL (2000) Effects of calcium on embryogenic induction and the accumulation of abscisic acid, and an early cysteine-labeled metallothionein gene in androgenic microspores of Triticum aestivum. Plant Sci 150:201–207CrossRefGoogle Scholar
  67. Reynolds TL, Crawford RL (1996) Changes in the abundance of an abscisic acid-responsive, early cysteine-labeled metallothionein transcript during pollen embryogenesis in bread wheat (Triticum aestivum). Plant Mol Biol 32:823–829PubMedCrossRefGoogle Scholar
  68. Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646PubMedGoogle Scholar
  69. Schoof H, Lenhard M, Haecker A, Mayer KFX, Jurgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644PubMedCrossRefGoogle Scholar
  70. Schulze D, Pauls KP (1998) Flow cytometric characterization of embryogenic and gametophytic development in Brassica napus microspore cultures. Plant Cell Physiol 39:226–234Google Scholar
  71. Schulze D, Pauls KP (2002) Flow cytometric analysis of cellulose tracks development of embryogenic Brassica cells in microspore cultures. New Phytol 154:249–254CrossRefGoogle Scholar
  72. Sentenac H, Bonneaud N, Minet M, Lacroute F, Salmon JM, Gaymard F, Grignon C (1992) Cloning and expression in yeast of a plant potassium ion transport system. Science 256:663–665PubMedGoogle Scholar
  73. Smykal P, Pechan PM (2000) Stress, as assessed by the appearance of sHsp transcripts, is required but not sufficient to initiate androgenesis. Physiol Plant 110:135–143CrossRefGoogle Scholar
  74. Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, Harada JJ (2001) LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci USA 98:11806–11811PubMedCrossRefGoogle Scholar
  75. Takayama S, Sakagami Y (2002) Peptide signalling in plants. Curr Opin Plant Biol 5:382–387PubMedCrossRefGoogle Scholar
  76. Testillano PS, Ramirez C, Domenech J, Coronado MJ, Vergne P, Matthys Rochon E, Risueno MC (2002) Young microspore-derived maize embryos show two domains with defined features also present in zygotic embryogenesis. Int J Dev Biol 46:1035–1047PubMedGoogle Scholar
  77. Thibaud-Nissen F, Shealy RT, Khanna A, Vodkin LO (2003) Clustering of microarray data reveals transcript patterns associated with somatic embryogenesis in soybean. Plant Physiol 132:118–136PubMedCrossRefGoogle Scholar
  78. Toonen MAJ, Schmidt EDL, vanKammen A, deVries SC (1997) Promotive and inhibitory effects of diverse arabinogalactan proteins on Daucus carota L. somatic embryogenesis. Planta 203:188–195CrossRefGoogle Scholar
  79. Touraev A, Ilham A, Vicente O, Heberle-Bors E (1996) Stress-induced microspore embryogenesis in tobacco: an optimized system for molecular studies. Plant Cell Rep 15:561–565Google Scholar
  80. Van Hengel AJ, Guzzo F, van Kammen A, de Vries SC (1998) Expression pattern of the carrot EP3 endochitinase genes in suspension cultures and in developing seeds. Plant Physiol 117:43–53PubMedGoogle Scholar
  81. Van Hengel AJ, Tadesse Z, Immerzeel P, Schols H, van Kammen A, de Vries SC (2001) Nacetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis. Plant Physiol 125:1880–1890PubMedGoogle Scholar
  82. Van Hengel Arjon J, van Kammen A, de Vries Sacco C (2002) A relationship between seed development, arabinogalactan-proteins (AGPs) and the AGP mediated promotion of somatic embryogenesis. Physiol Plant 114:637–644PubMedGoogle Scholar
  83. Van Zyl L, Bozhkov PV, Clapham DH, Sederoff RR, von Arnold S (2003) Up, down and up again is a signature global gene expression pattern at the beginning of gymnosperm embryogenesis. Gene Expr Patterns 3:83–91PubMedGoogle Scholar
  84. Von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ 69:233–249Google Scholar
  85. Vrinten PL, Nakamura T, Kasha KJ (1999) Characterization of cDNAs expressed in the early stages of microspore embryogenesis in barley (Hordeum vulgare) L. Plant Mol Biol 41:455–463PubMedCrossRefGoogle Scholar
  86. West MAL, Yee KM, Danao J, Zimmerman JL, Fischer RL, Goldberg RB, Harada JJ (1994) LEAFY COTYLEDON1 is an essential regulator of late embryogenesis and cotyledon identity in Arabidopsis. Plant Cell 6:1731–1745PubMedCrossRefGoogle Scholar
  87. Wobus U, Weber H (1999) Seed maturation: genetic programmes and control signals. Curr Opin Plant Biol 2:33–38PubMedCrossRefGoogle Scholar
  88. Yeung EC (1995) Structural and developmental patterns in somatic embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants, vol 20. Kluwer, Dordrecht, pp 205–247Google Scholar
  89. Yeung EC (2002) The canola microspore-derived embryo as a model system to study developmental processes in plants. J Plant Biol 45:119–133CrossRefGoogle Scholar
  90. Yeung EC, Rahman MH, Thorpe TA (1996) Comparative development of zygotic and microspore-derived embryos in Brassica napus L. cv Topas. I. Histodifferentiation. Int J Plant Sci 157(1):27–39CrossRefGoogle Scholar
  91. Zhang SB, Wong L, Meng L, Lemaux PG (2002) Similarity of expression patterns of knotted1 and ZmLEC1 during somatic and zygotic embryogenesis in maize (Zea mays L.). Planta 215:191–194PubMedGoogle Scholar
  92. Zheng MY, Weng Y, Liu W, Konzak CF (2002) The effect of ovary-conditioned medium on microspore embryogenesis in common wheat (Triticum aestivum L.). Plant Cell Rep 20:802–807Google Scholar
  93. Ziauddin A, Simion E, Kasha KJ (1990) Improved plant generation from shed microspore culture in barley (Hordeum vulgare L.) cultivar Igri. Plant Cell Rep 9:69–72CrossRefGoogle Scholar
  94. Zimmerman LJ (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423PubMedCrossRefGoogle Scholar
  95. Zuo JR, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-toembryonic transition in Arabidopsis. Plant J 30:349–359PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Kim Boutilier
    • 1
  • Martijn Fiers
    • 1
  • Chun-Ming Liu
    • 1
  • Apolonia Lonneke H.M. van der Geest
    • 1
  1. 1.Plant Research InternationalWageningenThe Netherlands

Personalised recommendations