Pathways to Microspore Embryogenesis

  • Tatiana Aionesei
  • Alisher Touraev
  • Erwin Heberle-Bors
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 56)


Anther Culture Microspore Culture Pollen Wall Microspore Embryogenesis Pollen Mitosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Assani A, Bakry F, Kerbellec F, Haicour R, Wenzel G, Foroughi-Wehr B (2003) Production of haploids from anther culture of banana [Musa balbisiana (BB)]. Plant Cell Rep 21:511–516PubMedGoogle Scholar
  2. Barnabas B, Obert B, Kovacs G (1999) Colchicine, an efficient genome doubling agent for maize (Zea mays L.) microspores cultured in anthers. Plant Cell Rep 18:858–862Google Scholar
  3. Benito-Moreno RM, Macke F, Hauser MT, Alwen A, Heberle-Bors E (1988) Sporophytes and gametophytes from in vitro cultured, immature tobacco pollen. In: Cresti M, Jori P, Paccini E (eds) Sexual reproduction in higher plants. Springer, Berlin Heidelberg New York, pp 137–142Google Scholar
  4. Berger F, Taylor A, Brownlee C (1994) Cell fate determination by the cell wall in early Fucus development. Science 263:1421–1423PubMedGoogle Scholar
  5. Binarova P, Straatman K, Hause B, Hause G, van Lammeren AMM(1993) Nuclear DNA synthesis during the induction of embryogenesis in cultured microspores and pollen of Brassica napus L. Theor Appl Genet 87:9–16CrossRefGoogle Scholar
  6. Binarova P, Hause G, Cenklova V, Cordevener JHG, van Lookeren Campagne MM (1997) A short severe heat shock is required to induce embryogenesis in late bicellular pollen of Brassica napus L. Sex Plant Reprod 10:200–208CrossRefGoogle Scholar
  7. Bolik M, Koop HU (1991) Identification of embryogenic microspores of barley (Hordeum vulgare L.) by individual selection and culture and their potential for transformation by microinjection. Protoplasma 162:61–68CrossRefGoogle Scholar
  8. Chaturvedi R, Razdan MK, Bhojwani SS (2003) Production of haploids of neem (Azadirachta indica A. Juss.) by anther culture. Plant Cell Rep 21:531–537PubMedGoogle Scholar
  9. Chen C (1977) In vitro development of plants from microspores of rice. In Vitro 13:484–489PubMedGoogle Scholar
  10. Coenen C, Lomax TL (1997) Auxin-cytokinin interactions in higher plants: old problems and new tools. Trends Plant Sci 2(9):351–356PubMedCrossRefGoogle Scholar
  11. Custers JBM, Cordewener JHG, Nöllen Y, Dons JJM, van Lookeren-Campagne MM (1994) Temperature controls both gametophytic and sporophytic development in microspore culture of Brassica napus. Plant Cell Rep 13:267–271CrossRefGoogle Scholar
  12. Dunwell JM, Sunderland N (1974a) Pollen ultrastructure in anther cultures of Nicotiana tabacum I. Early stages of culture. J Exp Bot 25:352–361Google Scholar
  13. Dunwell JM, Sunderland N (1974b) Pollen ultrastructure in anther cultures of Nicotiana tabacum II. Changes associated with embryogenesis. J Exp Bot 25:363–373Google Scholar
  14. Dunwell JM, Sunderland N (1975) Pollen ultrastructure in anther cultures of Nicotiana tabacum III. The first sporophytic division. J Exp Bot 26:240–252Google Scholar
  15. Eady C, Lindsey K, Twell D (1995) The significance of microspore division and division symmetry of vegetative cell-specific transcription and generative cell differentiation. Plant Cell 7:65–74PubMedCrossRefGoogle Scholar
  16. Fan Z, Armstrong KC, Keller WA (1988) Development of microspores in vivo and in vitro in Brassica napus L. Protoplasma 147:191–199CrossRefGoogle Scholar
  17. Ferrie AMR, Palmer CE, Keller WA (1995) Haploid embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants, vol 20. Kluwer, Dordrecht, pp 309–344Google Scholar
  18. Gaillard A, Vergne P, Beckert M (1991) Optimization of maize microspore isolation and conditions for reliable plant regeneration. Plant Cell Rep 10:55–58CrossRefGoogle Scholar
  19. Garrido D, Vicente O, Heberle-Bors E, Rodriquez-Garcia MI (1995) Cellular changes during the acquisition of embryogenic potential in isolated pollen grains of Nicotiana tabacum. Protoplasma 186:220–230CrossRefGoogle Scholar
  20. Germana MA, Chiancone B (2003) Improvement of Citrus clementina Hort. ex Tan. microspore-derived embryoid induction and regeneration. Plant Cell Rep 22:181–187PubMedGoogle Scholar
  21. Goldberg RB, de Paiva G, Yadegari R (1994) Plant embryogenesis: zygote to seed. Science 266:605–614PubMedGoogle Scholar
  22. Gomez A, Pintos B, Aguiriano E, Manzanera JA, Bueno MA (2001) SSR markers for Quercus suber tree identification and embryo analysis. J Hered 92(3):292–295PubMedCrossRefGoogle Scholar
  23. Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497Google Scholar
  24. Guo Y-D, Pulli S (2000) An efficient androgenic embryogenesis and plant regeneration method through isolated microspore culture in timothy (Phleum pratense L.). Plant Cell Rep 19:761–767Google Scholar
  25. Guo ZS, Sun AC, Wang YY, Gui YL, Gu SR, Miao SH (1978) Studies on induction of pollen plants and androgenesis in maize. Acta Bot Sin 20:204–209Google Scholar
  26. Hansen M (1994) Gametic embryogenesis in Brassica: optimization of production and germination of embryos. In: Javornik B, Bohanec B, Kreft I (eds) Proc Int Colloquium on Impact of Plant Biotechnology on Agriculture, Rogla, Slovenia. Centre for Plant Biotechnology and Breeding, University of Ljubljana, Slovenia, pp 15–18Google Scholar
  27. Hause B, van Veenendaal WLH, Hause G, van Lammeren AMM (1994) Expression of polarity during early development of microspore-derived and zygotic embryos of Brassica napus L. cv. Topas. Bot Acta 107:369–472Google Scholar
  28. Heberle-Bors E (1983) Induction of embryogenic pollen grains in situ and subsequent in vitro pollen embryogenesis in Nicotiana tabacum L. by treatments of pollen donor plants with feminizing agents. Physiol Plant 59:67–72Google Scholar
  29. Heberle-Bors E (1989) Isolated pollen culture in tobacco: plant reproductive development in a nutshell. Sex Plant Reprod 2:1–10CrossRefGoogle Scholar
  30. Heberle-Bors E (1999) Microspore culture, totipotency, and doubled haploids in plant breeding. In vitro Cell Dev Biol-Plant 35:165–167Google Scholar
  31. Hoekstra S, van Zijderveld MH, Heidekamp F, van der Mark F (1992) Anther and microspore culture of Hordeum vulgare L. cv. Igri. Plant Sci 86:89–96CrossRefGoogle Scholar
  32. Höfer M, Touraev A, Heberle-Bors E (1999) Induction of embryogenesis from isolated apple microspores. Plant Cell Rep 18:1012–1017Google Scholar
  33. Ilic-Grubor K, Attre SM, Fowke LC (1998) Comparative morphological study of zygotic and microspore-derived embryos of Brassica napus L. as revealed by scanning electron microscopy. Ann Bot 82:157–165Google Scholar
  34. Indrianto A, Barinova J, Touraev A, Heberle-Bors E (2001) Tracking individual wheat microspores in vitro: identification of embryogenic microspores and body axis formation in the embryo. Planta 212:163–174PubMedCrossRefGoogle Scholar
  35. Iyer RD, Raina SK (1972) The early ontogeny of embryoids and callus from pollen and subsequent organogenesis in anther cultures of Datura metel and rice. Planta 104:146–156CrossRefGoogle Scholar
  36. J’Aiti F, Benlhabib O, Sharma HC, El Jaafari S, El Hadrami I (1999) Genotypic variation in anther culture and effect of ovary coculture in durum wheat. Plant Cell Tissue Organ Cult 59:71–76Google Scholar
  37. Kasha KJ, Hu TC, Oro R, Simion E, Shim YS (2001) Nuclear fusion leads to chromosome doubling during mannitol pretreatment of barley (Hordeum vulgare L.) microspores. J Exp Bot 52(359):1227–1238PubMedCrossRefGoogle Scholar
  38. Koltunov AM (1993) Apomixis: embryo sac and embryos formed without meiosis or fertilization in ovules. Plant Cell 5:1425–1437Google Scholar
  39. Kumlehn J, Lörz H (1999) Monitoring sporophytic development of individual microspores of barley (Hordeum vulgare L.). In: Clement C, Audran C-J (eds) Anther and pollen, from biology to biotechnology. Springer, Berlin Heidelberg New York, pp 183–189Google Scholar
  40. Kyo M, Harada H (1986) Control of the developmental pathway of tobacco pollen in vitro. Planta 168:427–432CrossRefGoogle Scholar
  41. Lindsey K, Topping JF (1993) Embryogenesis: a question of pattern. J Exp Bot 44(259):359–374Google Scholar
  42. Löschenberger F, Pfosser M, Heberle-Bors E (1995) Genetic variability for the frequency of double haploid green plants is correlated with the ratio of green to albino plants in wheat (Triticum aestivum L.) microspore-derived plants. J Genet Breed 49:37–44Google Scholar
  43. Mayer U, Jürgens G (1998) Pattern formation in plant embryogenesis: a reassessment. Semin Cell Dev Biol 9:187–193PubMedCrossRefGoogle Scholar
  44. Miao S-H, Kuo C-S, Kwei Y-L, Sun A-T, Ku S-Y, Lu W-L, Wang Y-Y, Chen M-L, Wu M-K, Hang L (1978) Induction of pollen plants of maize and observations on their progeny. In: Proc Symp on Plant Tissue Culture. Science Press, Peking, pp 22–33Google Scholar
  45. Misoo S, Yoshida K, Mastubayashi M (1979) Studies on the mechanisms of pollen embryogenesis. III. Mitotic responses of the pollen to varied sucrose concentrations and the process of embryoid formation in tobacco anther culture. Sci Rep Fac Agric Kobe Univ 13:193–202Google Scholar
  46. Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87PubMedGoogle Scholar
  47. Pal A (1983) Isolated microspore culture of the winged bean, Psophocarpus tetragonolobus (L) DC — growth, development and chromosomal status. Indian J Exp Biol 21:597–599Google Scholar
  48. Pan JL, Gao GH, Ban H (1983) Initial patterns of androgenesis in wheat anther culture. Acta Bot Sin 25:34–39Google Scholar
  49. Qu RD, Chen Y (1984) Pathways of androgenesis and observations on cultured pollen grains in rice (Oryzia sativa subsp. Keng). Acta Bot Sin 26:580–587Google Scholar
  50. Raghavan V (1976) Role of the generative cell in androgenesis in henbane. Science 191:388–389PubMedGoogle Scholar
  51. Raghavan V (1978) Origin and development of pollen embryoids and pollen calluses in cultured anther segments of Hyoscyamus niger (henbane). Am J Bot 65:984–1002Google Scholar
  52. Raghavan V (1979) An autoradiographic study of RNA synthesis during pollen embryogenesis in Hyoscyamus niger (henbane). Am J Bot 66:784–795Google Scholar
  53. Raghavan V (1986) Embryogenesis in angiosperms. A development and experimental study. Cambridge University Press, CambridgeGoogle Scholar
  54. Raghavan V (1997) Molecular embryology of flowering plants. Cambridge University Press, CambridgeGoogle Scholar
  55. Raina SK, Irfan ST (1998) High frequency embryogenesis and plantlet regeneration from isolated microspores of indica rice. Plant Cell Rep 17:957–962CrossRefGoogle Scholar
  56. Rao PS, Suprasanna P (1996) Methods to double haploid chromosome numbers. In: Mohan Jain M, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants, vol1. Kluwer, Dordrecht, pp317–340Google Scholar
  57. Rashid A, Siddiqui AW, Reinert J (1981) Ultrastructure of embryogenic pollen of Nicotiana tabacum var. Badischer Burley. Protoplasma 107:375–385CrossRefGoogle Scholar
  58. Rashid A, Siddiqui AW, Reinert J (1982) Subcellular aspects of origin and structure of pollen embryo of Nicotiana. Protoplasma 113:202–208Google Scholar
  59. Reinert J (1959) Über die Kontrolle der Morphogenese und die Induktion von Adventiveembryonen in Gewebekulturen aus Karotten. Planta 53:318–333Google Scholar
  60. Reynolds TL (1993) A cytological analysis of microspores of Triticum aestivum (Poaceae) during normal ontogeny and induced embryogenic development. Am J Bot 80:569–576Google Scholar
  61. Reynolds TL (1997) Pollen embryogenesis. Plant Mol Biol 33:1–10PubMedCrossRefGoogle Scholar
  62. Sangwan RS, Camefort H (1984) Cold-treatment related structural modifications in the embryogenic anthers of Datura. Cytologia 49:473–487Google Scholar
  63. Sangwan RS, Sangwan-Norreel BS (1987a) Biochemical cytology of pollen embryogenesis. Int Rev Cytol 107:221–272Google Scholar
  64. Sangwan RS, Sangwan-Norreel BS (1987b) Ultrastructural cytology of plastids in pollen grains of certain androgenic and nonandrogenic plants. Protoplasma 138:11–22CrossRefGoogle Scholar
  65. Schumann G (1990) In vitro production of haploids in Triticale. In: Bajaj YPS (ed) Wheat. Biotechnology in agriculture and forestry, vol 13. Springer, Berlin Heidelberg New York, pp 348–402Google Scholar
  66. Simmonds DH, Keller WA (1999) Significance of preprophase bands of microtubules in the induction of microspore embryogenesis of Brassica napus. Planta 208:383–391CrossRefGoogle Scholar
  67. Sinha S, Jha KK, Roy RP (1978) Segmentation pattern of pollen in anther culture of Solanum surattrense, Luffa cylindrica and Luffa echinata. Phytomorphology 28:43–49Google Scholar
  68. Steward FC, Mapes MO, Smith J (1958) Growth and organized development of cultured cells. I. Growth and division of freely suspended cell. Am J Bot 45:693–703Google Scholar
  69. Strabala TJ, Wu VH, Li Y (1996) Combined effects of auxin transport inhibitors and cytokinin: alterations of organ development in tobacco. Plant Cell Physiol 37(8):1177–1182Google Scholar
  70. Sun CS (1978) Androgenesis of cereal crops. In: Proc Symp on Plant Tissue Culture. Science Press, Peking, pp 117–123Google Scholar
  71. Sunderland N (1973) Pollen and anther culture. In: Street HE (ed) Plant tissue and cell culture. University of California Press, Berkeley, pp 205–239Google Scholar
  72. Sunderland N, Evans LJ (1980) Multicellular pollen formation in cultured barley anthers. II. The A, B, C pathways. J Exp Bot 31:501–514Google Scholar
  73. Sunderland N, Wicks FM (1971) Embryoid formation in pollen grains of Nicotiana tabacum. J Exp Bot 22:213–226Google Scholar
  74. Sunderland N, Collins GB, Dunwell JM (1974) The role of nuclear fusion in pollen embryogenesis of Datura innoxia Mill. Planta 117:227–241CrossRefGoogle Scholar
  75. Sunderland N, Roberts M, Evans LJ, Wildon DC (1979) Multicellular pollen formation in cultured barley anthers. I. Independent division of the generative and vegetative cells. J Exp Bot 30:1133–1144Google Scholar
  76. Supena EDJ, Liu CM, Custer J (2003) Brassica napus microspore culture as biological model for studying suspensor function. In: Proc Conf on Embryogenesis and Development Regulation in Plants, Book of Abstracts, Villa Gualino, Torino, Italy, 6–7 March, pp 14–17Google Scholar
  77. Taylor RL (1967) The foliar embryos of Malaxis padulosa. Can J Bot 45:1553–1556CrossRefGoogle Scholar
  78. Telmer CA, Newcomb W, Simmonds DH (1993) Microspore development in Brassica napus and the effect of high temperature on division in vivo and in vitro. Protoplasma 172:154–165CrossRefGoogle Scholar
  79. Telmer CA, Newcomb W, Simmonds DH (1995) Cellular changes during heat shock induction and embryo development of cultured microspores of Brassica napus cv. Topas. Protoplasma 185:106–112CrossRefGoogle Scholar
  80. Toonen MAJ, Hendriks T, Schmidt EDL, Verhoeven HA, van Kammen A, de Vries SC (1994) Description of somatic-embryo-forming cells in carrot suspension cultures employing video cell tracking. Planta 194:565–572CrossRefGoogle Scholar
  81. Touraev A, Lezin F, Heberle-Bors E, Vicente O (1995) Maintenance of gametophytic development after symmetrical division in tobacco microspore culture. Sex Plant Reprod 8:70–76CrossRefGoogle Scholar
  82. Touraev A, Ilham A, Vicente O, Heberle-Bors (1996a) Stress induced microspore embryogenesis from tobacco microspores: an optimized system for molecular studies. Plant Cell Rep 15:561–565Google Scholar
  83. Toureav A, Indrianto A, Wratschko I, Vicente O, Heberle-Bors E (1996b) Efficient microspore embryogenesis in wheat (Triticum aestivum. L) induced by starvation at high temperatures. Sex Plant Reprod 9:209–215Google Scholar
  84. Touraev A, Vicente O, Heberle-Bors E (1997) Initiation of microspore embryogenesis by stress. Trends Plant Sci 2:285–303CrossRefGoogle Scholar
  85. Touraev A, Pfosser M, Heberle-Bors E (2001) The microspore: a haploid multipurpose cell. Adv Bot Res 35:53–109Google Scholar
  86. Twell D, Howden R (1998) Mechanisms of asymmetric division and cell fate determination in developing pollen. In: Chupeau Y, Caboche M, Henry Y (eds) Androgenesis in haploid plants. Springer, Berlin Heidelberg New York, pp 69–97Google Scholar
  87. Wang C-C, Chu C-C, Cun C-S, Wu S-H, Yin K-C, Hsü C (1973) The androgenesis in wheat (Triticum aestivum) anthers cultured in vitro. Sci Sin 16:218–222Google Scholar
  88. Yao QA, Simion E, William M, Krochko J, Kasha KJ (1997) Biolistic transformation of haploid isolated microspores of barley Hordeum vulgare L. Genome 40:570–581PubMedGoogle Scholar
  89. Yeung EC, Meinke DW (1993) Embryogenesis in angiosperms: development of the suspensor. Plant Cell 5:1371–1381PubMedCrossRefGoogle Scholar
  90. Yeung EC, Rahman MH, Thorpe TA (1996) Comparative development of zygotic and microspore-derived embryos in Brassica napus L. cv. Topas. I. Histodifferentiation. Int J Plant Sci 157:27–39CrossRefGoogle Scholar
  91. Zaki MAM, Dickinson HG (1990) Structural changes during the first divisions of embryos resulting from anther and microspore culture in Brassica napus. Protoplasma 156:149–162CrossRefGoogle Scholar
  92. Zaki MAM, Dickinson HG (1991) Microspore-derived embryos in Brassica: the significance of division symmetry in pollen mitosis I to embryogenic development. Sex Plant Reprod 4:48–55CrossRefGoogle Scholar
  93. Zarsky V, Garrido D, Rihova L, Tupy J, Vicente O, Heberle-Bors E (1992) Depression of the cell cycle by starvation is involved in the induction of tobacco pollen embryogenesis. Sex Plant Reprod 5:189–194CrossRefGoogle Scholar
  94. Zhao JP, Simmonds DH, Newcomb W (1996) Induction of embryogenesis with colchicines instead of heat in microspores of Brassica napus L. cv. Topas. Planta 198:433–439CrossRefGoogle Scholar
  95. Zhu ZQ, Sun JS, Wang JJ (1978) Cytological investigation on androgenesis of Triticum aestivum. Acta Bot Sin 20:6–12Google Scholar
  96. Zonia LE, Tupy J (1995) Lithium treatment of Nicotiana tabacum microspores blocks polar nuclear migration, disrupts the partitioning of membrane-associated Ca2+, and induces symmetrical mitosis. Sex Plant Reprod 8:152–160CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Tatiana Aionesei
    • 1
  • Alisher Touraev
    • 1
  • Erwin Heberle-Bors
    • 1
  1. 1.Max F. Perutz Laboratories, University Departments at the Vienna BiocenterInstitute of Microbiology and GeneticsViennaAustria

Personalised recommendations