Modeling for Bioinformatics

  • Scott Mann
  • Yi-Ping Phoebe Chen


Hide Markov Model Bayesian Network Training Dataset Sequence Identification Boolean Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, D., Sali, A. (2001) Protein Structure Prediction and Structural Genomics. Science 294: 93–96.CrossRefGoogle Scholar
  2. Baldi, P., Chauvin, Y., Hunkapiller, T., McClure, M. (1994) Hidden Markov models of biological primary sequence information. In: Proc. Natl. Acad. Sci. USA 91: 1059–1063.Google Scholar
  3. Bates, P.A., Sternberg, M.J.E. (1999) Model building by comparison at CASP3: using expert knowledge and computer automation, Proteins: Structure, Function and Genetics. Suppl 3: 47–54.Google Scholar
  4. Batzoglou, S., Pachter, L., Mesirov, J.P., Berger, B., Lander, E.S. (2000) Human and Mouse Gene Structure: Comparative Analysis and Application to Exon Prediction. Genome Research 10: 950–958.CrossRefGoogle Scholar
  5. Berman, H.M., Westbrook, J. Feng, Z. Gilliland, G. Bhat, TN., Weissig, H., Shindyalov, I.N., Bourne, P.E. (2000) The Protein Data Bank, Nucleic Acids Research 28: 235–242.CrossRefGoogle Scholar
  6. Contreras-Moreira, B., Bates, P.A. (2002) Domain Fishing: a first step in protein comparative modeling. Bioinformatics 18: 1141–1142.CrossRefGoogle Scholar
  7. Friedman, N., Linial, M., Nachman, I., Pe'er, D. (2000) Using Bayesian Network to Analyze Expression Data. Journal of Computational Biology 7: 601–620.CrossRefGoogle Scholar
  8. Havel, T.F. and Snow, M.E. (1991) A new method for building protein conformations from sequence alignments with homologues of known structure. J. Mol. Biol. 217: 1–7CrossRefGoogle Scholar
  9. Hunter, L. (February 2004) Lecture 17: Computing with Expression Array Results. Scholar
  10. Karchin, R. (1999) Hidden Markov Models and Protein Sequence Analysis. In: Proc. 7th International Conference on Intelligent Systems for Molecular Biology.Google Scholar
  11. Kemp, G. (February 2004) Bioinformatics III Lecture: Comparative Modeling. http://www. cs. Scholar
  12. Kent, W.J. and Zahler, A.M. (2000) Conservation, Regulation, Synteny, and Introns in a Large-scale C. briggsae-C. elegans Genomic Alignment. Genome Research 10: 1115–1125.CrossRefGoogle Scholar
  13. Kolinski, A., Betancourt, M.R., Kihara, D., Rotkiewicz, P. and Skolnick, J. (2001) Generalized Comparative Modeling (GENECOMP): A combination of sequence comparison, threading, and lattice modeling for protein structure prediction and refinement. Proteins: Structure, Function and Genetics 44: 133–149.CrossRefGoogle Scholar
  14. Krogh, A. (1998) An Introduction to Hidden Markov Models for Biological Sequences. In: Computational Methods in Molecular Biology, pp 45–63.Google Scholar
  15. Levitt, M. (1992) Accurate Modeling of Protein Conformation by Automatic Segment Matching. J. Mol. Biol. 226: 507–533.CrossRefGoogle Scholar
  16. Purdue, E. (2000) Comparative Genomics., July.Google Scholar
  17. Ravichandran, S. (November 2003) Homology Modeling: Concepts and Protocols. Scholar
  18. Richon, A.B. (2001) An Introduction to Molecular Modeling. Mathematech 1: 83.Google Scholar
  19. Rivas, E., Eddy, S.R. (2000) Secondary structure alone is generally not statistically significant for the detection of noncoding RNAs. Bioinformatics 16: 573–585.Google Scholar
  20. Sali, A. and Blundell, T.L. (1993) Comparative protein modeling by satisfaction of spatial restraints. J. Mol. Biol. 234: 779–815.CrossRefGoogle Scholar
  21. Shmueli, O., Horn-Saban, S., Chalifa-Caspi, V., Shmoish, M., Ophir, R., Benjamin-Rodrig, H., Safran, M., Domany, E. and Lancet, D. (2003) GeneNote: whole genome expression profiles in normal human tissues. Comptes Rendus Biologies 326: 1067–1072.CrossRefGoogle Scholar
  22. Shmulevich, I., Dougherty, E.R., Kim, S., Zhang, W. (2002) Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18: 261–274.Google Scholar
  23. Sjolander, K., Karplus, K., Brown, M., Hughey, R., Krogh, A., Mian, S.I. and Haussler, D. (1996) Dirichlet mixtures: a method for improved detection of weak but significant protein sequence homology. Computer Applications in the Biosciences 12: 327–345.Google Scholar
  24. Suter-Crazzolara, C. and Kurapkat, G, (2001) Comparative Genomics for the Mining of Data. Genetic Engineering News 21 11: 34–35.Google Scholar
  25. Tatusov, R.L., Koonin, E.V. and Lipman, D.J. (1997) A Genomic Perspective on Protein Families. Science 278: 631–637.CrossRefGoogle Scholar
  26. UCSC, Computational Biology Group (February 2004) Sequence Alignment and Modeling System. Scholar
  27. Varfolomeev, S.D., Uporov, I.V. and Fedorov, E.V. (2002) Bioinformatics and Molecular Modeling in Chemical Enzymology. Active Sites of Hydrolases. Biochemistry (Moscow) 67: 1099–1108.Google Scholar
  28. Velculescu, V.E., Zhang, L., Vogelstein B, Kinzler KW (1995) Serial Analysis of Gene Expression. Science 270: 484–487.Google Scholar
  29. Washington University (December 2003) The Rfam database of RNA alignments and CMs. Scholar
  30. Westhead, D.R. (February 2004) Structural Bioinformatics. Scholar
  31. Zapp, M.A. (2002) The Structures of Life. National Institute of General Medical Sciences, Scholar

Copyright information

© Springer-Verlag Berlin Hiedelberg 2005

Authors and Affiliations

  • Scott Mann
    • 1
  • Yi-Ping Phoebe Chen
    • 1
  1. 1.School of Information Technology Faculty of Science and TechnologyDeakin UniversityAustralia

Personalised recommendations