Advertisement

Computational Modeling of Biological Processes with Petri Net-Based Architecture

  • Masao Nagasaki
  • Atushi Doi
  • Hiroshi Matsuno
  • Satoru Miyano

Conclusion

To accomplish the objective in Section 7.1, we discussed the importance of a biological processes development environment that can easily and smoothly support (i) modeling of biological processes, (ii) simulation of biological processes, (iii) visualization of their simulations, and (iv) integration of existing biological pathway databases for modeling, and we developed their applications, (i/ii) GON, GONML, (iii) Visualizer, and (iv) BPE, BPEOS, while developing the new Petri net-based architecture HFPN/HFPNe that is suitable for modeling and simulation of complex biological processes.

It must be noted that in our development environment, one unknown biological phenomenon in multicellular systems was discovered (Matsuno et al., 2003b). In Matsuno et al. (2003b), the mechanism of Notch-dependent boundary formation in the Drosophila large intestine is analyzed by comparing experimental manipulation of Delta expression with modeling and simulation results in our development environment. Boundary formation representing the situation in normal large intestine was shown by the simulation. By manipulating the Delta expression in the large intestine, a few types of disorder in boundary cell differentiation were observed, and similar abnormal patterns were generated by the simulation. These simulation results suggest that values of parameters which represent the strength of cell-autonomous suppression of Notch signaling by Delta are essential for generating two different modes of patterning; lateral inhibition and boundary formation, which could explain how a common gene regulatory network results in two different patterning modes in vivo.

The fact that the discovery was accomplished in our environment is important. Another important thing is the process of discovery; the project members, mainly Matsuno and members of the Murakami developmental biology laboratory, have weekly communicated the biological processes by modeling and simulating in our development environment, the GON and Visualizer. These two facts reveal comprising the concepts of our objective are important, and our architecture and applications are acceptable in actual research fields.

Keywords

System Biology Markup Language Generic Entity Document Type Definition Ribosomal Frameshifting Item Collection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alla, H. and David, R. (1998) Continuous and hybrid Petri nets. Journal of Circuits, Systems, and Computers8: 159–188.CrossRefMathSciNetGoogle Scholar
  2. Amara, S.G. and Jonas, V., Rosenfeld, M.G. Ong, E.S. and Evans, R.M. (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298: 240–244.CrossRefGoogle Scholar
  3. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M. and Sherlock, G. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25 25–29.Google Scholar
  4. Bates, G., Harper, P. and Jones, L., eds 2002) untington’s Disease. 3rd edn. Oxford University Press.Google Scholar
  5. Becker, U. and Moldt, D. (1993) Object-oriented concepts for coloured Petri nets. In: IEEE International Conference on Systems, Man and Cybernetics. Volume 3., IEEE, 279–286.Google Scholar
  6. Berg, J.M., Stryer, L. and Tymoczko, J.L. (2002) Biochemistry. 5th edn. W.H. Freeman.Google Scholar
  7. Billington, J., Christensen, S., van Hee, K.M., Kindler, E., Kummer, O., Petrucci, L., Post, R., Stehno, C. and Weber, M. (2003) The Petri net markup language: concepts, technology, and tools. In: Applications and Theory of Petri Nets 2003, 24th International Conference (ICATPN). Volume 2679 of Lecture Notes in Computer Science., Springer-Verlag, 483–505. BPEOS: http://bpe.genomicobject.net/. Cell Designer: http://sbserv.symbio.jst.go.jp/. CellML: http://www.cellml.org/.Google Scholar
  8. Chen, M., Ona, V.O., Li, M., Ferrante, R.J., Fink, K.B., Zhu, S., Bian, J., Guo, L., Farrell, L.A., Hersch, S.M., Hobbs, W., Vonsattel, J.P., Cha, J.H. and Friedlander, R.M. (2000) Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat. Med. 6: 797–801.CrossRefGoogle Scholar
  9. Coleman, T.P., Tran, Q. and Roesser, J.R. (2003) Binding of a candidate splice regulator to a calcitonin-specific splice enhancer regulates calcitonin/CGRP pre-mRNA splicing. Biochim. Biophys. Acta. 1625153–164. CORBA: http://www.omg.org/.Google Scholar
  10. David, R. and Alla, H.: Continuous Petri nets. In: 8th European Workshop on Application and Theory of Petri Nets. Volume 340 of Lecture Notes in Computer Science. Springer-Verlag (1987) 275–294 Delphi: http://www.borland.com/delphi/. Design/CPN: http://www.daimi.au.dk./designCPN/.Google Scholar
  11. Doi, A., Fujita, S., Matsuno, H., Nagasaki, M. and Miyano, S. (2004) Constructing biological pathway models with hybrid functional Petri nets. In Silico Biology, Submitted.Google Scholar
  12. Doi, A., Nagasaki, M., Fujita, S., Matsuno, H. and Miyano, S. (2004) Genomic Object Net:II. Modeling biopathways by hybrid functional Petri net with extension. Applied Bioinformatics 2: 185–188.Google Scholar
  13. Drath, R. (1998) Hybrid object nets: an object oriented concept for modeling complex hybrid systems. In: 3rd International Conference on Automation of Mixed Processes: Hybrid Dynamical Systems (ADPM), Shaker Verlag, 437–442.Google Scholar
  14. Drath, R, Engmann, U. and Schwuchow, S. (1999) Hybrid aspects of modeling manufacturing systems using modified Petri nets. In: 5th Workshop on Intelligent Manufacturing Systems. http://www.systemtechnik.tu-ilmenau.de/~drath/ download/Brasil98.ps.zip.Google Scholar
  15. Extensible markup language (XML) (1998) http://www.w3.org/XML/.Google Scholar
  16. Genomic Object Net (GON): http://GenomicObject.net/.Google Scholar
  17. Genrich, H., Kuffner, R. and Voss, K. (2001) Executable Petri net models for the analysis of metabolic pathways. International Journal on Software Tools for Technology Transfer (STTT) 3: 394–404.MATHGoogle Scholar
  18. GTL Scientific Plan: http://www.doegenomestolife.org/.Google Scholar
  19. Hackam, A.S., Singaraja, R., Wellington, C.L. Metzler, M., McCutcheon, K., Zhang, T., Kalchman, M. and Hayden, M.R. (1998) The influence of huntingtin protein size on nuclear localization and cellular toxicity. J. Cell. Biol. 141: 1097–1105.CrossRefGoogle Scholar
  20. Heiner, M., Koch, I. and Voss, K. (2001) Analysis and simulation of steady states in metabolic pathways with Petri nets. In: Third Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN tools. 15–34 http://www.daimi.au.dk/CPnets/workshop01/cpnpapers/PB554.pdf. HFPNe generic models: http://genomicobject.net/public/BiotechBook2004/code/.Google Scholar
  21. Hickey, M.A. and Chesselet, M.F. (2003)Apoptosis in Huntingtons disease. Prog Neuropsychopharmacol Biol Psychiatry 27: 255–265.CrossRefGoogle Scholar
  22. Hofestädt, R. (1994) A Petri net application of metabolic processes. J. System Analysis, Modeling and Simulation16: 113–122.MATHGoogle Scholar
  23. Hofestädt, R. and Thelen, S. (1998) Quantitative modeling of biochemical networks. In Silico Biol. 1: 39–53.Google Scholar
  24. Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H. Arkin, A.P., Bornstein, B.J., Bray, D., Cornish-Bowden, A., Cuellar, A.A., Dronov, S., Gilles, E.D., Ginkel, M., Gor, V., Goryanin, I.I., Hedley, W.J., Hodgman, T.C., Hofmeyr, J.H., Hunter, P.J., Juty, N.S., Kasberger, J.L., Kremling, A., Kummer, U., Le Novere, N., Loew, L.M., Lucio, D., Mendes, P., Minch, E., Mjolsness, E.D., Nakayama, Y., Nelson, M, R., Nielsen, P.F., Sakurada, T., Schaff, J.C., Shapiro, BE., Shimizu, T.S., Spence, H.D., Stelling. J., Takahashi, K., Tomita, M., Wagner, J. and Wang, J. (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics19: 524–531.CrossRefGoogle Scholar
  25. Jacks, T., Power, M.D., Masiarz, F.R., Luciw, P.A., Barr, P.J. and Varmus, H.E. (1988) Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature 331: 280–283.CrossRefGoogle Scholar
  26. Kanehisa, M. and Goto, S. (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28: 27–30.CrossRefGoogle Scholar
  27. Karp, P.D., Riley, M., Paley, S.M. and Pellegrini-Toole, A.: The MetaCyc Database. Nucleic Acids Res. 30 (2002) 59–61.Google Scholar
  28. Karp, P.D., Riley, M., Saier, M., Paulsen, I.T., Collado-Vides, J., Paley, S.M., Pellegrini-Toole, A., Bonavides, C. and Gama-Castro, S.: The EcoCyc Database. Nucleic Acids Res. 30 (2002)56–58.Google Scholar
  29. Kim, Y.J., Yi, Y., Sapp, E., Wang, Y., Cuiffo, B., Kegel, K.B., Qin Z.H., Aronin, N. and DiFiglia, M. (2001) Caspase 3-cleaved N-terminal fragments of wildtype and mutant huntingtin are present in normal and Huntington’s disease brains, associate with membranes, and undergo calpain-dependent proteolysis. Proc. Natl. Acad. Sci. U. S. A. 98: 12784–12789.Google Scholar
  30. Kohn, K.W. (1999) Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Mol. Biol. Cell. 10: 2703–2734.Google Scholar
  31. Kuipers, B.J., Shults, B. (1994) Reasoning in logic about continuous systems. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Fourth International Conference (KR94), Morgan Kaufmann, 391–402.Google Scholar
  32. Kummer, O. (2001) Introduction to Petri nets and reference nets. Sozionik Aktuell 1–9.Google Scholar
  33. Maier, C. and Moldt, D. (2001) Object coloured Petri nets-a formal technique for object oriented modeling. In: Concurrent Object-Oriented Programming and Petri Nets, Advances in Petri Nets. Volume 2001 of Lecture Notes in Computer Science., Springer-Verlag, 406–427.Google Scholar
  34. Martin, J.B. and Gusella, J.F. (1986) Huntington’s disease. Pathogenesis and management. N. Engl. J. Med. 315: 1267–1276. MathML: http://www.w3.org/mathml/.Google Scholar
  35. Matsui, M., Fujita, S., Suzuki, S., Matsui, M.H.M. and Miyano, S. (2004) Simulated cell division processes of the Xenopus cell cycle pathway by Genomic Object Net. Journal of Integrative Bioinformatics 0001, Online Journal: http://journal.imbio.de/index.php?paper_id=3.Google Scholar
  36. Matsuno, H., Doi, A., Hirata, Y. and Miyano, S. (2001) XML documentation of biopathways and their simulations in Genomic Object Net. Genome Informatics 1254–62.Google Scholar
  37. Matsuno, H., Doi, A., Nagasaki, M. and Miyano, S. (2000) Hybrid Petri net representation of gene regulatory network. Pacific Symposium on Biocomputing 5: 341–352Google Scholar
  38. Matsuno, H., Fujita, S., Doi, A., Nagasaki, M. and Miyano, S. (2003) Towards biopathway modeling and simulation. In: 24th International Conference on Applications and Theory of Petri Nets (ICATPN 2003). Volume 2679., Lecture Notes in Computer Science, 3–22MathSciNetGoogle Scholar
  39. Matsuno, H., Murakami, R., Yamane, R., Yamasaki, N., Fujita, S., Yoshimori, H. and Miyano, S. (2003) Boundary formation by notch signaling in Drosophila multicellular systems: experimental observations and gene network modeling by Genomic Object Net. Pacific Symposium on Biocomputing 8: 152–163.Google Scholar
  40. Matsuno, H., Tanaka, Y., Aoshima, H., Doi, A., Matsui, M. and Miyano, S. (2003) Biopathways representation and simulation on hybrid functional Petri net. In Silico Biol. 3: 389–404.Google Scholar
  41. Matsuoka, S., Sarai, N., Kuratomi, S., Ono, K. and Noma, A. (2003) Role of individual ionic current systems in ventricular cells hypothesized by a model study. The Japanese Journal of Physiology 53: 105–123.CrossRefGoogle Scholar
  42. Mendes, P. (1993) GEPASI: a software package for modeling the dynamics, steady states and control of biochemical and other systems. Comput. Appl. Biosci. 9: 563–571. Molecular Cell Biology Media Resources: http://www.whfeeman.com/lodish/.Google Scholar
  43. Nagasaki, M. (2004) A Platform for Biopathway Modeling/Simulation and Recreating Biopathway Databases Towards Simulation, Ph. D Thesis, The University of Tokyo, http://genomicobject.net/pub/nagasaki_phd.pdf.Google Scholar
  44. Nagasaki, M., Doi, A., Matsuno and H., Miyano, S, (2003) Recreating biopathway databases towards simulation. In: Computational Methods in Systems Biology. Volume 2602 of Lecture Notes in Computer Science., Springer-Verlag, 191–192.Google Scholar
  45. Nagasaki, M., Doi, A., Matsuno, H. and Miyano, S. (2004) A versatile Petri net based architecture for modeling and simulation of complex biological processes. Genome Informatics 14, Submitted.Google Scholar
  46. Nagasaki, M., Doi, A., Matsuno, H. and Miyano, S. (2004) Genomic Object Net:I. A platform for modeling and simulating biopathways. Applied Bioinformatics 2: 181–184.Google Scholar
  47. Nagasaki, M., Doi, A., Matsuno, H. and Miyano, S. (2004) Integrating biopathway databases for large-scale modeling and simulation. In: The Second Asia-Pacific Bioinformatics Conference. 29 of Conferences in Research and Practice in Information Technology., Australian Computer Society, 43–52Google Scholar
  48. Nagasaki, M., Onami, S., Miyano, S. and Kitano, H. (1999) Bio-calculus: its concept and molecular interaction. Genome Informatics 10: 133–143.Google Scholar
  49. Nakano, M., Kitakaze, H., Matsuno, H. and Miyano, S. (2002) XML pathway file conversion between Genomic Object Net and SBML. Genome Informatics 13: 457–458.Google Scholar
  50. Olaf. K., Frank, W. (2000) Renew-the reference net workshop. In: 21st International Conference on Application and Theory of Petri Nets. 1825 Lecture Notes in Computer Science., Springer-Verlag, 87–89 http://www.informatik.uni-hamburg.de/TGI/renew/renew.html.Google Scholar
  51. Onami, S., Hamahashi, S., Nagasaki, M., Miyano, S. and Kitano, H. (2001) Automatic acquisition of cell lineage through 4D microscopy and analysis of early C. elegans embryogenesis. MIT PressGoogle Scholar
  52. Overbeek, R., Larsen, N., Pusch, G.D., D’souza, M., Selkov, E.J., Kyrpides, N., Fonstein, M., Maltsev, N. and Selkov, E. (2000) WIT: integrated system for highthroughput genome sequence analysis and metabolic reconstruction. Nucleic Acids Res. 28 123–125.CrossRefGoogle Scholar
  53. PathPursuit: http://www.scbio.co.jp/products/pathpursuit/index.html.Google Scholar
  54. Petri net community: http://www.daimi.au.dk/PetriNets/tools/.Google Scholar
  55. Pnuts: http://www.pnuts.org/.Google Scholar
  56. PnutsSyntax: http://pnuts.org/snapshot/latest/doc/lang-TOC.html.Google Scholar
  57. Reddy, V.N., Mavrovouniotis, M. L, Liebman, M.N. (1993) Petri net representations in metabolic pathways. In: Proceedings First International Conference on Intelligent Systems for Molecular Biology. Volume 1., MIT Press, 328–336. Regular language description for XML (Relax) (2000) http://www.xml.gr.jp/relax/.Google Scholar
  58. Reisig, W. and Rozenberg, G., eds. (1998) Lecture on Petri nets I: Basic Models Lecture Notes in Computer Science. Volume 1491 of Lecture Notes in Computer Science. Springer-Verlag.Google Scholar
  59. Reisig, W. and Rozenberg, G., eds. (1998) Lecture on Petri nets II: Applications Lecture Notes in Computer Science. Volume 1492 of Lecture Notes in Computer Science Springer-Verlag.Google Scholar
  60. Roizin, L., Stellar, S. and Liu, J.C. (1979) Neuronal nuclear-cytoplasmic changes in Huntington’s chorea: electron microscope investigations. Raven Press, pp 95–122.Google Scholar
  61. Roy, S., Bayly, C.I., Gareau, Y., Houtzager, V.M., Kargman, S., Keen, S.L., Rowland, K., Seiden, I.M., Thornberry, N.A., Nicholson, D.W. (2001) Maintenance of caspase-3 proenzyme dormancy by an intrinsic “safety catch” regulatory tripeptide. Proc. Natl. Acad. Sci. U. S. A. 98: 6132–6137.CrossRefGoogle Scholar
  62. Schaff, J., Fink, C.C., Slepchenko, B., Carson, J.H. and Loew, L.M. (1997) A general computational framework for modeling cellular structure and function. Biophys. J. 73: 1135–1146.CrossRefGoogle Scholar
  63. Schomburg, I., Chang, A. and Schomburg, D. (2002) BRENDA, enzyme data and metabolic information. Nucleic Acids Resa. 30: 47–49.Google Scholar
  64. Senut, M.C., Suhr, S.T., Kaspar, B. and Gage, F.H. (2000) Intraneuronal aggregate formation and cell death after viral expression of expanded polyglutamine tracts in the adult rat brain. J. Neurosci. 20: 219–229Google Scholar
  65. The Huntington’s disease collaborative research group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72: 971–83Google Scholar
  66. Tomita, M. (2001) Whole-cell simulation: a grand challenge of the 21st century. Trends Biotechnol. 19: 205–210CrossRefGoogle Scholar
  67. Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T.S., Matsuzaki, Y., Miyoshi, F., Saito, K., Tanida, S., Yugi, K. and Venter, J.C., Hutchison CA 3rd (1999) E-CELL: software environment for whole-cell simulation. Bioinformatics 15: 72–84.CrossRefGoogle Scholar
  68. Tran, Q., Coleman, T.P. and Roesser, J.R. (2003) Human transformer 2beta and SRp55 interact with a calcitonin-specific splice enhancer. Biochim. Biophys. Acta. 1625: 141–152.Google Scholar
  69. Valk, R. (1978) Self-modifying nets, a natural extension of Petri nets. In: International Colloquium on Automata, Languages and Programming (ICALP). Volume 62 of Lecture Notes in Computer Science., Springer-Verlag, pp 464–476MATHMathSciNetGoogle Scholar
  70. Voet, D. and Voet, J.G. (1995) BIOCHEMISTRY. 2nd edn. John Wiley Sons, Inc. VON++: http://www.systemtechnik.tu-ilmenau.de/~drath/visual_E.htm.Google Scholar
  71. Webster, S.D., Cason, Z., Lemos, L.B. and Benghuzzi, H. (2000) Cytohistologic correlation in patients with clinical symptoms of postmenopausal bleeding. Biomed. Sci. Instrum. 36: 367–372.Google Scholar
  72. Wellington, C.L., Ellerb L.M., Gutekunst, C.A., Rogers, D., Warby, S., Graham, R.K., Loubser, O., van, R.J., Singaraja, R., Yang, Y.Z., Gafni, J., Bredesen, D., Hersch, S.M., Leavitt, B.R., Roy, S. and Nicholson, D.W. and Hayden, M.R. (2002) Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington’s disease. J. Neurosci. 22: 7862–7872.Google Scholar
  73. Wellington, C.L., Ellerby, L.M., Hackam, A.S., Margolis, R.L., Trifiro, M.A., Singaraja, R., McCutcheon, K., Salvesen, G.S., Propp, S.S., Bromm, M., Rowland, K.J., Zhang, T., Rasper, D., Roy, S., Thornberry, N., Pinsky, L., Kakizuka, A., Ross, C.A., Nicholson, D.W., Bredesen, D.E. and Hayden, M.R. (1998) Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J. Biol. Chem. 273: 9158–9167.CrossRefGoogle Scholar
  74. Wheeler, V.C., White, J.K., Gutekunst, C, A., Vrbanac, V., Weaver, M., Li, X.J., Li, S.H., Yi, H., Vonsattel, J.P., Gusella, J.F., Hersch, S., Auerbach, W., Joyner, A.L. and MacDonald, M.E. (2000) Long glutamine tracts cause nuclear localization of a novel form of huntingtin in medium spiny striatal neurons in HdhQ92 and HdhQ111 knock-in mice. Hum. Mol. Genet. 9: 503–513.CrossRefGoogle Scholar
  75. XML Schema Part 0: Primer, W3C Working Draft (2000) http://www.w3.org/TR/xmlschema-0/.Google Scholar

Copyright information

© Springer-Verlag Berlin Hiedelberg 2005

Authors and Affiliations

  • Masao Nagasaki
    • 1
  • Atushi Doi
    • 2
  • Hiroshi Matsuno
    • 2
  • Satoru Miyano
    • 1
  1. 1.Human Genome Center, Institute of Medical ScienceUniversity of TokyoTokyoJapan
  2. 2.Graduate School of Science and EngineeringYamaguchi UniversityYamaguchiJapan

Personalised recommendations