Systems Biotechnology: a New Paradigm in Biotechnology Development

  • Sang Yup Lee
  • Soon Ho Hong
  • Dong Yup Lee
  • Tae Yong Kim


Modeling and simulation of cellular process are invaluable for organizing and integrating available metabolic knowledge and designing the right experiments. Simulation of biological systems through metabolic modeling can provide crucial information concerning cellular behavior under various genetic and environmental conditions, thus suggesting various strategies for the development of efficient biotechnology processes. The current predictive power of biological simulation is, however, limited by insufficient knowledge of global regulation and kinetic information, and thus in silico design-based process development might seem to be unrealistic. However, considering the fact that the currently widespread simulation of electrical circuits and aircraft design had also been criticized for similar reasons in their emerging days, it is expected that increased accuracy and validity of biological simulation will be achieved in the near future; the accumulation of large amounts of global scale data from genomics advances in simulation methods will make this true.

Systems biotechnology is the way biotechnology should be developed and practiced from now hence. Upstream (strain, cell, and organism development), midstream (fermentation and other unit operations) and down-stream processes of biotechnology will benefit significantly from adapting systems biotechnological approaches. The cases of mid- to down-stream bioprocesses resemble the systems engineering approach that has been successfully applied in chemical industries (the core subject of chemical engineering). Now it is time to adapt systems biotechnological approaches 6 Systems Biotechnology: a New Paradigm in Biotechnology Development 171 for developing upstream processes such as strain development, which will ultimately lead to successful biotechnology development when combined with systems engineering of mid- to down-stream processes. This is Systems Biotechnology!


Metabolic Network Metabolic Flux Flux Distribution Corynebacterium Glutamicum Metabolic Flux Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam, P.J., Berry, J., Loader, J.A., Tyson, K.L., Craggs, G., Smith, P., De Belin, J., Steers, G., Pezzella, F., Sachsenmeir, K.F., Stamps, A.C., Herath, A., Sim, E., O’Hare, M.J., Harris, A, L. and Terrett. J.A. (2003) Arylamine Nacetyltransferase-1 is highly expressed in breast cancers and conveys enhanced growth and resistance to Etoposide in vitro. Mol. Cancer Res. 1: 826–835.Google Scholar
  2. Alur, R., Belta, C., Kumar, V., Mintz, M., Pappas, G.J., Rubin, H. and Schug, J. (2002) Modeling and analyzing biomolecular networks. Computing Sci. Eng. 4: 20–31.Google Scholar
  3. Amrolia, P., Sullivan, S.G., Stern, A. and Munday, R. (1989) Toxicity of aromatic thiols in the human red blood cell. J. Appl. Toxicol. 9: 113–118.Google Scholar
  4. Berkum, N.L. and Holstege, F.C. (2001) DNA microarrays: raising the profile. Curr. Opin. Biotechnol. 12: 48–52.Google Scholar
  5. Brent, R. (2000) Genomic biology. Cell 100: 169–183.CrossRefGoogle Scholar
  6. Carlson, J.M. and Doyle, J. (2002) Complexity and robustness. Proc. Natl. Acad. Sci. USA 99: 2538–2545.CrossRefGoogle Scholar
  7. Choe, L.H., Chen, W. and Lee, K.H. (1999) Proteome analysis of factor for inversion stimulation (Fis) overproduction in Escherichia coli. Electrophoresis 20: 798–805.CrossRefGoogle Scholar
  8. Choi, J.H., Lee, S.J., Lee, S.J. and Lee, S.Y. (2003) Enhanced production of insulin-like growth factor I fusion protein in Escherichia coli by coexpression of the down-regulated genes identified by transcriptome profiling. Appl. Environ. Microbiol. 69: 4737–4742.CrossRefGoogle Scholar
  9. Cornish-Bowden, A, and Hofmeyr, J.H. (1991) METAMODEL-A program for modeling and control analysis of metabolic pathways on the IBM PC and compatibles. Comput. Appl. Biosci. 7: 89–93.Google Scholar
  10. Dauner, M. and Sauer, U. (2001) Stoichiometric growth model for riboflavinproducing Bacillus subtilis. Biotechnol. Bioeng. 76: 132–143.Google Scholar
  11. Delneri, D., Brancia, F.L. and Oliver, S.G. (2001) Towards a truly integrative biology through the functional genomics of yeast. Curr. Opin. Biotechnol. 12: 87–91.CrossRefGoogle Scholar
  12. Demmelmair, H., Sauerwald, T., Koletzko, B. and Richter, T. (1997) New insights into lipid and fatty acid metabolism via stable isotopes. Eur. J. Pediatr. 156: S70–S74.Google Scholar
  13. Devos, D. and Valencia, A. (2001) Intrinsic errors in genome annotation. Trends Gen. 17: 429–431.Google Scholar
  14. Dongre, A.R., Opiteck, G., Cosand, W.L. and Hefta, S.A. (2001) Proteomics in the post-genome age. Biopolymers 60: 206–211.CrossRefGoogle Scholar
  15. Drummelsmith, J., Brochu, V., Girard, I., Messier, N. and Ouellette, M. (2003) Proteome mapping of the protozoan parasite leishmania and application to the study of drug targets and resistance mechanisms. Mol. Cell Proteomics. 2: 146–155.Google Scholar
  16. Edwards, J.S. and Palsson, B.O. (2000) Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions. BMC Bioinformatics. 1: 1–10.CrossRefGoogle Scholar
  17. Ehlde, M. and Zacchi, G. (1995) MIST: a user-friendly metabolic simulator. Comput. Appl. Biosci. 11: 201–207.Google Scholar
  18. Eisen, M.B., Spellman, P.T., Brown, P.O. and Botstein, D. (1998) Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95: 14863–14868.CrossRefGoogle Scholar
  19. Endy, D. and Brent, R. (2001) Modeling cellular behavior. Nature 409: 391–395.CrossRefGoogle Scholar
  20. Erasmus, D.J., van der Merwe, G.K. and van Vuuren, H.J. (2003) Genome-wide expression analyses: metabolic adaptation of Saccharomyces cerevisiae to high sugar stress. FEMS Yeast Res. 3: 375–399.Google Scholar
  21. Eymann, C., Homuth, G., Scharf, C. and Hecker, M. (2002) Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis. J. Bacteriol. 184: 2500–2520.CrossRefGoogle Scholar
  22. Fell, D.A. (1997) Understanding the control of metabolism. Portland Press.Google Scholar
  23. Fraser, C.M., Eisen, J.A. and Salzberg, S.L. (2000) Microbial genome sequencing. Nature 406: 799–803.Google Scholar
  24. Fukuda, K. and Takagi, T. (2001) Knowledge representation of signal transduction pathways. Bioinformatics 17: 829–837.CrossRefGoogle Scholar
  25. Glassbrook, N., Beecher, C. and Ryals, J. (2000) Metabolic profiling on the right path. Nat. Biotechnol. 18: 1142–1143.CrossRefGoogle Scholar
  26. Gohar, M., Okstad, O.A., Gilois, N., Sanchis, V., Kolsto, A.B. and Lereclus, D. (2002) Two-dimensional electrophoresis analysis of the extracellular proteome of Bacillus cereus reveals the importance of the PlcR regulon. Proteomics. 2: 784–791.CrossRefGoogle Scholar
  27. Goryanin, I., Hodgman, T.C. and Selkov, E. (1999) Mathematical simulation and analysis of cellular metabolism and regulation. Bioinformatics 15: 749–758.CrossRefGoogle Scholar
  28. de Graaf, A.A., Eggeling, L. and Sahm, H. (2001) Metabolic engineering for Llysine production by Corynebacterium glutamicum. Adv. Biochem. Eng. Biotechnol. 73: 9–29.Google Scholar
  29. Han, M.J., Jeong, K.J., Yoo, J.S. and Lee, S.Y. (2003) Engineering Escherichia coli for increased productivity of serine-rich proteins based on proteome profiling. Appl. Environ. Microbiol. 69: 5772–5781.CrossRefGoogle Scholar
  30. Hanahan, D. and Weinberg, R.A. (2000) The hallmarks of cancer. Cell 100: 57–70.CrossRefGoogle Scholar
  31. Hartwell, L.H., Hopfield, J.J., Leibler, S. and Murray, A.W. (1999) From molecular to modular cell biology. Nature 402: C47–C52.CrossRefGoogle Scholar
  32. Hatzimanikatis, V., Lee, K.H. and Bailey, J.E. (1999) A mathematical description of regulation of the G1-S transition of the mammalian cell cycle. Biotechnol. Bioeng. 65: 631–637.CrossRefGoogle Scholar
  33. Hogenesch, J.B., Ching, K.A., Batalov, S., Su, A, I., Walker, J.R., Zhou, Y., Kay, S.A., Schultz, P.G., Cooke and M.P. (2001) A comparison of the celera and ensembl predicted gene sets reveals little overlap in novel genes. Cell 106: 413–415.CrossRefGoogle Scholar
  34. Hong, S.H., Park, S.J., Moon, S.Y., Park, J.P. and Lee, S.Y. (2003) In silico prediction and validation of the importance of the Entner-Doudoroff pathway in poly(3-hydroxybutyrate) production by metabolically engineered Escherichia coli. Biotechnol. Bioeng. 83: 854–863.CrossRefGoogle Scholar
  35. Hua, Q., Yang, C., Baba, T., Mori, H. and Shimizu, K. (2003) Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knockouts. J. Bacteriol. 185: 7053–7067.CrossRefGoogle Scholar
  36. Hughes, T.R., Marton, M.J., Jones, A.R., Roberts. C.J., Stoughton, R., Armour, C.D., Bennett, H.A., Coffey, E., Dai, H., He, Y.D., Kidd, M.J., King, A, M., Meyer, M.R., Slade, D., Lum, P.Y., Stepaniants, S.B., Shoemaker, D.D., Gachotte, D., Chakraburtty, K., Simon, J., Bard, M. and Friend, S.H. (2000) Functional discovery via a compendium of expression profiles. Cell 102: 109–126..CrossRefGoogle Scholar
  37. Ideker, T., Galitski, T. and Hood, L. (2001) A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet. 2: 343–372.CrossRefGoogle Scholar
  38. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N. and Barabasi, A.L. (2000) The large-scale organization of metabolic networks. Nature 407: 651–654.Google Scholar
  39. Jin, S., Ye, K. and Shimizu, K. (1997) Metabolic flux distributions in recombinant Saccharomyces cerevisiae during foreign protein production. J. Biotechnol. 54: 161–174.CrossRefGoogle Scholar
  40. Jordan, J.D., Landau, E.M. and Iyengar, R. (2000) Signaling networks: the origins of cellular multitasking. Cell 103: 193–200.CrossRefGoogle Scholar
  41. Karp, P.D. (2000) An ontology for biological function based on molecular interactions. Bioinformatics 16: 269–285.CrossRefMathSciNetGoogle Scholar
  42. Kitano, H. (2002a) Computational systems biology. Nature 420: 206–210.CrossRefGoogle Scholar
  43. Kitano, H. (2002b) Systems biology: a brief overview. Science 295: 1662–1664.CrossRefGoogle Scholar
  44. Klamt, S., Stelling, J., Ginkel, M. and Gilles, E.D. (2003) FluxAnalyzer: exploring structure, pathways, and flux distributions in metabolic networks on interactive flux maps. Bioinformatics 19: 261–269.CrossRefGoogle Scholar
  45. Kolpakov, F.A., Ananko EA, Kolesov GB, Kolchanov NA (1998) GeneNet: a gene network database and its automated visualization. Bioinformatics 14: 529–537.CrossRefGoogle Scholar
  46. Lee, D.Y., Yun, H., Park, S. and Lee, S.Y. (2003) MetaFluxNet: the management of metabolic reaction information and quantitative metabolic flux analysis. Bioinformatics 19: 2144–2146.Google Scholar
  47. Lee, J.H., Lee, D.E., Lee, B.U. and Kim, H.S. (2003) Global analyses of transcriptomes and proteomes of a parent strain and an L-threonine-overproducing mutant strain. J. Bacteriol. 185: 5442–5451.Google Scholar
  48. Lee, K.H. (2001) Proteomics: a technology-driven and technology-limited discovery science. Trends Biotechnol. 19: 217–222.CrossRefGoogle Scholar
  49. Lee, S.Y. (1996) High cell-density culture of Escherichia coli. Trends Biotechnol. 14: 98–105.Google Scholar
  50. Lee, S.Y., Papoutsakis ET (1999) Metabolic Engineering. Marcel Dekker.Google Scholar
  51. Leerkes, M.R., Caballero, O.L., Mackay, A., Torloni, H., O’Hare, M.J., Simpson, A.J. and de Souza, S.J. (2002) In silico comparison of the transcriptome derived from purified normal breast cells and breast tumor cell lines reveals candidate upregulated genes in breast tumor cells. Genomics 79: 257–265.CrossRefGoogle Scholar
  52. Leung, Y.F., Lam, D.S., Pang, C.P. (2001) In silico biology: observation, modeling, hypothesis and verification. Trends Genet. 17: 622–623.CrossRefGoogle Scholar
  53. Li, J., Adrian, T.E. (1999) A factor from pancreatic and colonic cancer cells stimulates glucose uptake and lactate production in myoblasts. Biochem. Biophys. Res. Commun. 260: 626–633.CrossRefGoogle Scholar
  54. Loew, L.M. and Schaff, J.C. (2001) The Virtual Cell: a software environment for computational cell biology. Trends Biotechnol. 19: 401–406.CrossRefGoogle Scholar
  55. Marton, M.J., DeRisi, J.L., Bennett, H.A., Iyer, V.R., Meyer, M.R., Roberts, C.J., Stoughton, R., Burchard, J., Slade, D., Dai, H., Bassett DE, Jr., Hartwell, L.H., Brown, P.O. and Friend, S.H. (1998) Drug target validation and identification of secondary drug target effects using DNA microarrays. Nat. Med. 4: 1293–1301.CrossRefGoogle Scholar
  56. Matthews, D.E., Pesola, G., Campbell, R.G. (1990) Effect of epinephrine on amino acid and energy metabolism in humans. Am. J. Physiol. 258: E948–956.Google Scholar
  57. McAtee, C.P., Hoffman, P.S. and Berg, D.E. (2001) Identification of differentially regulated proteins in metronidozole resistant Helicobacter pylori by proteome techniques. Proteomics. 1: 516–521.CrossRefGoogle Scholar
  58. Mendes, P. (1997) Biochemistry by numbers: simulation of biochemical pathways with Gepasi3. Trends Biochem. Sci. 22: 361–363.CrossRefGoogle Scholar
  59. Nelson, K.E., Paulsen, I.T., Heidelberg, J.F. and Fraser, C.M. (2000) Status of genome projects for nonpathogenic bacterial and archaea. Nat. Biotechnol. 18: 1049–1054.CrossRefGoogle Scholar
  60. Nielsen, J. and Olsson, L. (2002) An expanded role for microbial physiology in metabolic engineering and functional genomics: moving towards systems biology. FEMS Yeast Research 2: 175–181.CrossRefGoogle Scholar
  61. Owens, G.E., Keri, R.A., Nilson and J.H. (2002) Ovulatory surges of human CG prevent hormone-induced granulosa cell tumor formation leading to the identification of tumor-associated changes in the transcriptome. Mol. Endocrinol. 16: 1230–1242.CrossRefGoogle Scholar
  62. Phair, R.D., Misteli, T. (2001) Kinetic modeling approaches to in vivo imaging. Nat. Rev. Mol. Cell Biol. 2: 898–907.CrossRefGoogle Scholar
  63. Phelps, T.J., Palumbo, A.V., Beliaev, A.S. (2002) Metabolomics and microarrays for improved understanding of phenotypic characteristics controlled by both genomics and environmental constraints. Curr. Opin. Biotechnol. 13: 20–24.CrossRefGoogle Scholar
  64. Poland, J., Schadendorf, D., Lage, H., Schnolzer, M., Celis, J.E. and Sinha, P. (2002) Study of therapy resistance in cancer cells with functional proteome analysis. Clin. Chem. Lab. Med. 40: 221–234.CrossRefGoogle Scholar
  65. Primiano, T., Baig, M., Maliyekkel, A., Chang, B.D., Fellars, S., Sadhu, J., Axenovich, S.A., Holzmayer, T.A. and Roninson, I.B. (2003) Identification of potential anticancer drug targets through the selection of growth-inhibitory genetic suppressor elements. Cancer Cell. 4: 41–53.Google Scholar
  66. Regan, L. and Gregory, M. (1995) Flux analysis of microbial metabolic pathways using a visual programming environment. J. Biotechnol. 42: 151–161.CrossRefGoogle Scholar
  67. Roberts, C.J., Nelson, B., Marton, M.J., Stoughton, R., Meyer, M.R., Bennett, H.A., He, Y.D., Dai, H., Walker, W.L., Hughes TR, Tyers M, Boone C, Friend SH (2000) Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287, 873–880.Google Scholar
  68. Robinson, M., Jiang, P., Cui, J., Li, J., Wang, Y., Swaroop, M., Madore, S., Lawrence, T.S. and Sun, Y. (2003) Global genechip profiling to identify genes responsive to p53-induced growth arrest and apoptosis in human lung carcinoma cells. Cancer Biol. Ther. 2: 406–415.Google Scholar
  69. Ryu, D.D.Y. and Nam, D.H. (2000) Recent progress in biomolecular engineering. Biotechnol. Prog. 16: 2–16.Google Scholar
  70. Rzhetsky, A., Koike, T., Kalachikov, S., Gomez, S.M., Krauthammer, M., Kaplan, S.H., Kra, P., Russo, J.J. and Friedman, C. (2000) A knowledge model for analysis and simulation of regulatory networks. Bioinformatics 16: 1120–1128.CrossRefGoogle Scholar
  71. Sahm, H., Eggeling, L. and de Graaf, A.A. (2000) Pathway analysis and metabolic engineering in Corynebacterium glutamicum. Biol. Chem. 381: 899–910.CrossRefGoogle Scholar
  72. Sauer, U., Hatzimanikatis, V., Hohmann, H.P., Manneberg, M., van Loon, A.P. and Bailey, J.E. (1996) Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis. Appl. Environ. Microbiol. 62: 3687–3696.Google Scholar
  73. Sauro, H.M. (1993) SCAMP: a general-purpose simulator and metabolic control analysis program. Comput. Applic. Biosci. 9: 441–450.Google Scholar
  74. Schuster, S., Fell, D.A. and Dandekar, T. (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat. Biotechnol. 18: 326–332.CrossRefGoogle Scholar
  75. Seeber, F. (2003) Biosynthetic pathways of plastid-derived organelles as potential drug targets against parasitic apicomplexa. Curr. Drug Targets Immune Endocr. Metabol. Disord. 3: 99–109.Google Scholar
  76. Sherlock, G. (2000) Analysis of large-scale gene expression data. Curr. Opin. Immunol. 12: 201–205.CrossRefGoogle Scholar
  77. Shimizu, T., Shima, K., Yoshino, K., Yonezawa, K., Shimizu, T. and Hayashi, H. (2002) Proteome and transcriptome analysis of the virulence genes regulated by the VirR/VirS system in Clostridium perfringens. J. Bacteriol. 184: 2587–2594.CrossRefGoogle Scholar
  78. Simpson, T.W., Follstad, B.D. and Stephanopoulos, G. (1999) Analysis of the pathway structure of metabolic networks. J. Biotechnol. 71: 207–223.CrossRefGoogle Scholar
  79. Somogyi, R. and Sniegoski, C.A. (1996) Modeling the complexity of genetic networks: Understanding multistage and pleiotropic regulation. Complexity 1: 45–63.MathSciNetGoogle Scholar
  80. Steele, D., Kertsburg, A and Soukup, G.A. (2003) Engineered catalytic RNA and DNA: new biochemical tools for drug discovery and design. Am. J. Pharmacogenomics 3: 131–144.Google Scholar
  81. Stein, R.C. and Zvelebil, M.J. (2002) The application of 2D gel-based proteomics methods to the study of breast cancer. J. Mammary Gland Biol. Neoplasia. 7: 385–393.CrossRefGoogle Scholar
  82. Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S. and Gilles, E.D. (2002) Metabolic network structure determines key aspects of functionality and regulation. Nature 420: 190–193.CrossRefGoogle Scholar
  83. Stephanopoulos, G. and Vallino, J.J. (1991) Network rigidity and metabolic engineering in metabolite overproduction. Science 252: 1675–1681.Google Scholar
  84. Tomita, M. (2001) Whole-cell simulation: a grand challenge of the 21st century. Trends Biotechnol. 19: 205–210.CrossRefGoogle Scholar
  85. Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., Smith, H.O., Yandell, M., Evans, C.A., Holt, R.A., Gocayne, J.D., Amanatides, P., Ballew, R.M., Huson, D.H., Wortman, J.R., Zhang, Q., Kodira, C.D., Zheng, X.H., Chen, L., Skupski, M., Subramanian, G., Thomas, P.D., Zhang, J., Gabor, M.G.L., Nelson, C., Broder, S., Clark, A.G., Nadeau, J., McKusick, V, A., Zinder, N., Levine, A.J., Roberts, R.J., Simon, M., Slayman, C., Hunkapiller, M., Bolanos, R., Delcher, A., Dew, I., Fasulo, D., Flanigan, M., Florea, L., Halpern, A., Hannenhalli, S., Kravitz, S., Levy, S., Mobarry, C., Reinert, K., Remington, K., Abu-Threideh, J., Beasley, E., Biddick, K., Bonazzi, V., Brandon, R., Cargill, M., Chandramouliswaran, I., Charlab, R., Chaturvedi, K., Deng, Z., Di Francesco, V., Dunn, P., Eilbeck, K., Evangelista, C., Gabrielian, A.E., Gan, W., Ge, W., Gong, F., Gu, Z., Guan, P., Heiman, T.J., Higgins, M.E., Ji, R.R., Ke, Z., Ketchum, K.A., Lai, Z., Lei, Y., Li, Z., Li, J., Liang, Y., Lin, X., Lu, F., Merkulov, G.V., Milshina, N., Moore, H.M., Naik, A.K., Narayan, V.A., Neelam, B., Nusskern, D., Rusch, D.B., Salzberg, S., Shao, W., Shue, B., Sun, J., Wang, Z., Wang, A., Wang, X., Wang, J., Wei, M., Wides, R., Xiao, C., Yan, C., Yao, A., Ye, J., Zhan, M., Zhang, W., Zhang, H., Zhao, Q., Zheng, L., Zhong, F., Zhong, W., Zhu, S., Zhao, S., Gilbert, D., Baumhueter, S., Spier, G., Carter, C., Cravchik, A., Woodage, T., Ali, F., An, H., Awe, A., Baldwin, D., Baden, H., Barnstead, M., Barrow, I., Beeson, K., Busam, D., Carver, A., Center, A., Cheng, M.L., Curry, L., Danaher, S., Davenport, L., Desilets, R., Dietz, S., Dodson, K., Doup, L., Ferriera, S., Garg, N., Gluecksmann, A., Hart, B., Haynes, J., Haynes, C., Heiner, C., Hladun, S., Hostin, D., Houck, J., Howland, T., Ibegwam, C., Johnson, J., Kalush, F., Kline, L., Koduru, S., Love, A., Mann, F., May, D., McCawley, S., McIntosh, T., McMullen, I., Moy, M., Moy, L., Murphy, B., Nelson, K., Pfannkoch, C., Pratts, E., Puri, V., Qureshi, H., Reardon, M., Rodriguez, R., Rogers, Y.H., Romblad, D., Ruhfel, B., Scott R., Sitter, C., Smallwood, M., Stewart, E., Strong, R., Suh, E., Thomas, R., Tint, N.N., Tse, S., Vech, C., Wang, G., Wetter, J., Williams, S., Williams, M., Windsor, S., Winn-Deen, E., Wolfe, K., Zaveri, J., Zaveri, K., Abril, J.F., Guigo, R., Campbell, M.J., Sjolander, K.V., Karlak, B., Kejariwal, A., Mi, H., Lazareva, B., Hatton, T., Narechania, A., Diemer, K., Muruganujan, A., Guo, N., Sato, S., Bafna, V., Istrail, S., Lippert, R., Schwartz, R., Walenz, B., Yooseph, S., Allen, D., Basu, A., Baxendale, J., Blick, L., Caminha, M., Carnes-Stine, J., Caulk, P., Chiang, Y.H., Coyne, M., Dahlke, C., Mays, A., Dombroski, M., Donnelly, M., Ely, D., Esparham, S., Fosler, C., Gire, H., Glanowski, S., Glasser, K., Glodek, A., Gorokhov, M., Graham, K., Gropman, B., Harris, M., Heil, J., Henderson, S., Hoover, J., Jennings, D., Jordan, C., Jordan, J., Kasha, J., Kagan, L., Kraft, C., Levitsky, A., Lewis, M., Liu, X., Lopez, J., Ma, D., Majoros, W., McDaniel, J., Murphy, S., Newman, M., Nguyen, T., Nguyen, N., Nodell, M., Pan, S., Peck, J., Peterson, M., Rowe, W., Sanders, R., Scott, J., Simpson, M., Smith, T., Sprague, A., Stockwell, T., Turner, R., Venter, E., Wang, M., Wen, M., Wu, D., Wu, M., Xia, A., Zandieh, A., Zhu, X. (2001) The sequence of human genome. Science 291: 1304–1351.CrossRefGoogle Scholar
  86. Verrills, N.M., Kavallaris, M. (2003) Drug resistance mechanisms in cancer cells: a proteomics perspective. Curr. Opin. Mol. Ther. 5: 258–265.Google Scholar
  87. Voit, E.O. (2000) Computational analysis of biochemical systems. Cambridge Univ. Press.Google Scholar
  88. Waghray, A., Schober, M., Feroze, F., Yao, F., Virgin, J. and Chen, Y.Q. (2001) Identification of differentially expressed genes by serial analysis of gene expression in human prostate cancer. Cancer Res. 61: 4283–4286.Google Scholar
  89. Wiechert, W. (2002) Modeling and simulation: tools for metabolic engineering. J Biotechnol. 94: 37–63.CrossRefGoogle Scholar
  90. Williams, K.L. (1999) Genomes and proteomes: towards a multidimensional view of biology. Electrophoresis 20: 678–688.Google Scholar
  91. Wittmann, C. and Heinzle, E. (2001) Application of MALDI-TOF MS to lysineproducing Corynebacterium glutamicum: a novel approach for metabolic flux analysis. Eur. J. Biochem. 268: 2441–2455.CrossRefGoogle Scholar
  92. Wu, W., Hu, W. and Kavanagh, J.J. (2002) Proteomics in cancer research. Int. J. Gynecol Cancer. 12: 409–423.CrossRefGoogle Scholar
  93. Yale, J. and Bohnert, H.J. (2001) Transcript expression in Saccharomyces cerevisiae at high salinity. J. Biol. Chem. 276: 15996–16007.CrossRefGoogle Scholar
  94. Ye, R.W., Tao, W., Bedzyk, L., Young, T., Chen, M. and Li, L. (2000) Global gene expression profiles of Bacillus subtilis grown under anaerobic conditions. J. Bacteriol. 182: 4458–4465.Google Scholar
  95. Yoon, S.H., Han, M.J., Lee, S.Y., Jeong, K.J., Yoo and J.S. (2002) Combined transcriptome and proteome analysis of Escherichia coli during the high cell density culture. Biotechnol. Bioeng. 81: 753–767.Google Scholar
  96. Yoshida, K., Kobayashi, K., Miwa, Y., Kang, C.M., Matsunaga, M., Yamaguchi, H., Tojo, S., Yamamoto, M., Nishi, R., Ogasawara, N., Nakayama, T. and Fujita, Y. (2001) Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. Nucleic Acids Res. 29: 683–692.Google Scholar
  97. Zhang, S., Day, I.N. and Ye, S. (2001) Microarray analysis of nicotine-induced changes in gene expression in endothelial cells. Physiol. Genomics. 5: 187–192.Google Scholar

Copyright information

© Springer-Verlag Berlin Hiedelberg 2005

Authors and Affiliations

  • Sang Yup Lee
    • 1
    • 2
  • Soon Ho Hong
    • 1
  • Dong Yup Lee
    • 1
    • 2
  • Tae Yong Kim
    • 1
  1. 1.Department of Chemical & Biomolecular Engineering and BioProcess Engineering Research CenterMetabolic and Biomolecular Engineering National Research LaboratoryDaejeonRepublic of Korea
  2. 2.Department of Biosystems and Bioinformatics Research CenterKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea

Personalised recommendations