Overview of Structural Bioinformatics

  • Qing Zhang
  • Stella Veretnik
  • Philip E. Bourne


Protein Data Bank Structural Classification Structural Alignment Fold Recognition Secondary Resource 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acharya, K.R., Ren J.S., Stuart, D.I., Phillips, D.C. and Fenna, R.E. (1991). Crystal structure of human alpha-lactalbumin at 1.7 A resolution. J Mol Biol 221(2): 571–81.Google Scholar
  2. Alexandrov, N.N., Takahashi, K., et al. (1992). Common spatial arrangements of backbone fragments in homologous and non-homologous proteins. J Mol Biol 225(1): 5–9.CrossRefGoogle Scholar
  3. Aloyand, P. and Russell, R.B. (2003). InterPreTS: protein interaction prediction through tertiary structure. Bioinformatics 19(1): 161–162.Google Scholar
  4. Aloy, P., Stark, A., et al. (2003). Predictions without templates: new folds, secondary structure, and contacts in CASP5. proteins 53: 436–456.CrossRefGoogle Scholar
  5. Bateman, A., Coin, L., et al. (2004). The Pfam protein families database. Nucleic Acids Res 32Database issue: D138–41.Google Scholar
  6. Berman, H.M., Westbrook, J., et al. (2000). The Protein Data Bank. Nucleic Acids Res 28(1): 235–42.CrossRefGoogle Scholar
  7. Bernstein, F.C., Koetzle, T.F., et al. (1977). The Protein Data Bank: a computerbased archival file for macromolecular structures. J Mol Biol 112(3): 535–42.Google Scholar
  8. Bohacek, R.S. and C. McMartin (1994). Multiple highly diverse structures complementary to enzyme binding sites: results of extensive application of de novo design method incorporating combinatorial grow. J Am Chem Soc 116: 5560–71.CrossRefGoogle Scholar
  9. Bourne, P.E. (1999). Bioinformatics 15: 715–6.Google Scholar
  10. Bourne, P.E., Addess, K.J., et al. (2004). The distribution and query systems of the RCSB Protein Data Bank. Nucleic Acids Res 32Database issue: D223–5.Google Scholar
  11. Bourne, P.E., Berman, H.M., et al. (1997). The macromolecular Crystallographic Information File (mmCIF).Google Scholar
  12. Bourne, P.E. and Weissig, H. Eds. (2003). Structural Bioinformatics. Hoboken, NJ, Wiley-Liss, Inc.Google Scholar
  13. Burley, S.K., Almo, S.C., et al. (1999). Structural genomics: beyond the human genome project. Nat Genet 23: 151–7.CrossRefGoogle Scholar
  14. Casari, G., Sander, C., et al. (1995). A method to predict functional residues in proteins. Nat Struct Biol 2(2): 171–8.CrossRefGoogle Scholar
  15. David, L., Luo, R., et al. (2001). Ligand-receptor docking with the Mining Minima optimizer. J Comput-Aided Mol Des 15: 157–71.Google Scholar
  16. Dror, O., Benyamini, H., et al. (2003). MASS: multiple structural alignment by secondary structures. Bioinformatics 19Suppl 1: I95–I104.Google Scholar
  17. Ewing, T.J.A. and I.D. Kuntz (1997). Critical evaluation of search algorithms for automated molecular docking and database screening. J Comp Chem 18: 1175–89.Google Scholar
  18. Fariselli, P., Pazos, F., et al. (2002). Prediction of protein—protein interaction sites in heterocomplexes with neural networks. Eur J Biochem 269(5): 1356–61.CrossRefGoogle Scholar
  19. Fetrow, J.S., Siew, N., et al. (2001). Genomic-scale comparison of sequence-and structure-based methods of function prediction: does structure provide additional insight? Protein Sci 10(5): 1005–14.CrossRefGoogle Scholar
  20. Gabb, H.A., Jackson, R.M., et al. (1997). Modeling protein docking using shape complementary, electrostatics, and biochemical information. J Mol Biol 272: 106–20.CrossRefGoogle Scholar
  21. Gerstein, M. and Levitt, M. (1996). Using iterative dynamic programming to obtain accurate pairwise and multiple alignments of protein structures. Proc Int Conf Intell Syst Mol Biol 4: 59–67.Google Scholar
  22. Gibrat, J.F., Madej, T., et al. (1996). Surprising similarities in structure comparison. Curr Opin Struct Biol 6(3): 377–85.CrossRefGoogle Scholar
  23. Goh, C.S., Bogan, A.A., et al. (2000). Co-evolution of proteins with their interaction partners. J Mol Biol 299(2): 283–93.CrossRefGoogle Scholar
  24. Gough, J., Karplus, K., et al. (2001). Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol 313(4): 903–19.CrossRefGoogle Scholar
  25. Guener, O., Ed. (2000). Pharmacophore Perception, Developement, and Use in Drug Design. La Jolla, CA, International University Line USA.Google Scholar
  26. Halperin, I., Ma, B., et al. (2002). Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins 47(4): 409–43.CrossRefGoogle Scholar
  27. Hansch, C., Leo, A., et al. (1995). Exploring QSAR. New York, Oxford University Press USA.Google Scholar
  28. Hegyi, H. and Gerstein, M. (1999). The relationship between protein structure and function: a comprehensive survey with application to the yeast genome. J Mol Biol 288(1): 147–64.CrossRefGoogle Scholar
  29. Hendlich, M. (1998). Databases for protein-ligand complexes. Acta Crystallogr D 54: 1178–82.CrossRefGoogle Scholar
  30. Holm, L. and Sander, C. (1993). Protein structure comparison by alignment of distance matrices. J Mol Biol 233(1): 123–38.CrossRefGoogle Scholar
  31. Holm, L. and Sander, C. (1994). Parser for protein folding units. Proteins 19(3): 256–68.Google Scholar
  32. Holm, L. and Sander, C. (1998). Dictionary of Recurrent Domains in Protein Structures. Proteins 1998(33): 88–96.Google Scholar
  33. Hoy J et al. (2003). “A global representation of protein fold space” Proc. Nat. Acad. Sci.:100; 2386–2390.Google Scholar
  34. Janin, J., Henrick, K., et al. (2003). CAPRI: a critical assessment of predicted interactions. Proteins 52: 2–9.Google Scholar
  35. Jones, D. T. and Ward, J. J. (2003). Prediction of Disordered Regions in Proteins From Position Specific Score Matrices. Proteins 53: 573–578.Google Scholar
  36. Katchalski-Katzir, Shariv, E., I., et al. (1992). Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc Natl Acad Sci U S A 89: 2195–9.Google Scholar
  37. Kinch, L. N., Wrabl, J. O., et al. (2003). CASP5 assessment of fold recognition target predictions. Proteins 53: 395–409.Google Scholar
  38. Kobayashi, N. and Go, N. (1997). A method to search for similar protein local structures at ligand binding sites and its application to adenine recognition. Eur Biophys J 126(2): 135–44.Google Scholar
  39. Kuntz, I. D., Blaney, J. M., et al. (1982). A geometric approach to macromolecular-ligand interactions. J Mol Biol 161: 269–88.CrossRefGoogle Scholar
  40. Laskowski, R.A., Luscombe, N. M., et al. (1996). Protein clefts in molecular recognition and function. Protein Sci 5(12): 2438–52.Google Scholar
  41. Lauri, G. and P.A. Barlett (1994). CAVEAT: a program to faciliate the design of organic molecules. J Comput-Aided Mol Des 8(1): 51–66.Google Scholar
  42. Lawrence, M. C. and Davis, P. C. (1992). CLIX: A search algorithm for finding novel ligands capable of binding proteins of known three-dimensional structure. Proteins 12: 31–41.CrossRefGoogle Scholar
  43. Leach, A. R. (1997). A survey of methods for searching the conformational space of small and medium-sized molecules. New York, Wiley-VCH.Google Scholar
  44. Leach, A. R. (2001). Molecular Modeling: Principles and Applications. Englewood Cliffs, NJ, Prentice Hall.Google Scholar
  45. Leach, A.R. and Hann, M.M. (2000). The in silico world of virtual libraries. Drug Discovery Today 5(8): 326–36.CrossRefGoogle Scholar
  46. Leibowitz, N., Nussinov, R., et al. (2001). MUSTA—a general, efficient, automated method for multiple structure alignment and detection of common motifs: application to proteins. J Comput Biol 8(2): 93–121.CrossRefGoogle Scholar
  47. Lesk, A. M. and Chothia, C. (1980). How different amino acid sequences determine similar protein structures: the structure and evolutionary dynamics of the globins. J Mol Biol 136(3): 225–70.CrossRefGoogle Scholar
  48. Levitt, M. and Chothia, C. (1976). Structural patterns in globular proteins. Nature 261(5561): 552–8.CrossRefGoogle Scholar
  49. Lichtarge, O., Bourne, H.R., et al. (1996). An evolutionary trace method defines binding surfaces common to protein families. J Mol Biol 257(2): 342–58.CrossRefGoogle Scholar
  50. Liu, M. and Wang, S. M. (1999). MCDOCK: A Monte Carlo simulation approach to the molecular docking problem. J Comput-Aided Mol Des 13(5): 435–51.Google Scholar
  51. Marchler-Bauer, A., Anderson, J. B., et al. (2003). CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Res 31(1): 383–7.CrossRefGoogle Scholar
  52. Marcotte, E. M., Pellegrini, M., et al. (1999). Detecting protein function and protein-protein interactions from genome sequences. Science 285(5428): 751–3.CrossRefGoogle Scholar
  53. Melamud, E. and Moult, J. (2003). Evaluation of disorder preditions in CASP5. Proteins 53: 561–565.CrossRefGoogle Scholar
  54. Morris, G.M., Goodsell, D. S., et al. (1998). Automated docking using a lamarckian genetic algorithm and an impirical binding free energy function. J Comp Chem 19: 1639–62.Google Scholar
  55. Moult, J., Fidelis, K., et al. (2003). Critical Assessment of Methods of Protein Structure Prediction (CASP)-Round V. Proteins 53: 334–339.CrossRefGoogle Scholar
  56. Murzin, A. G., Brenner, S. E., et al. (1995). SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247(4): 536–40.CrossRefGoogle Scholar
  57. Nooren, I. M. and Thornton, J. M. (2003). Diversity of protein-protein interactions. Embo J 22(14): 3486–92.CrossRefGoogle Scholar
  58. Obradovic, Z., Peng, K., et al. (2003). Predicting Intrinsic Disorder From Amino Acid Sequence. Proteins.Google Scholar
  59. Orengo, C. A., Michie, A. D., et al. (1997). CATH—a hierarchic classification of protein domain structures. Structure 5(8): 1093–108.CrossRefGoogle Scholar
  60. Orengo, C. A., Pearl, et al. (2003). The CATH Domain Structure Database. Structural Bioinformatincs. P. E. Bourne and H. Weissig, Willey & Sons publication: 249–272.Google Scholar
  61. Overbeek, R., Fonstein, M., et al. (1999). Use of contiguity on the chromosome to predict functional coupling. In Silico Biol 1(2): 93–108.Google Scholar
  62. Pazos, F., Helmer-Citterich, M., et al. (1997). Correlated mutations contain information about protein-protein interaction. J Mol Biol 271(4): 511–23.CrossRefGoogle Scholar
  63. Pazos, F. and Valencia, A. (2001). Similarity of phylogenetic trees as indicator of protein-protein interaction. Protein Eng 14(9): 609–14.Google Scholar
  64. Pellegrini, M., Marcotte, E. M., et al. (1999). Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci U S A 96(8): 4285–8.CrossRefGoogle Scholar
  65. Pereira-Leal, J.B. and Seabra, M. C. (2001). Evolution of the Rab family of small GTP-binding proteins. J Mol Biol 313(4): 889–901.CrossRefGoogle Scholar
  66. Ragan, M. A. and Gaasterland, T. (1998). Microbial genescapes: a prokaryotic view of the yeast genome. Microb Comp Genomics 3(4): 219–35.Google Scholar
  67. Rayer, M., Wefing, S., et al. (1996). Placement of medium-sized molecular fragments into active sites of proteins. 10: 41–54.Google Scholar
  68. Russell, R. B. (1998). Detection of protein three-dimensional side-chain patterns: new examples of convergent evolution. J Mol Biol 279(5): 1211–27.CrossRefGoogle Scholar
  69. Rutenber, E., Fauman, E. B., et al. (1993). Structure of a non-peptide inhibitor complexed with HIV-1 protease. Developing a cycle of structure-based drug design. J Biol Chem 268(21): 15343–6.Google Scholar
  70. Sali, A. and Blundell, T. L. (1990). Definition of general topological equivalence in protein structures. A procedure involving comparison of properties and relationships through simulated annealing and dynamic programming. J Mol Biol 212(2): 403–28.Google Scholar
  71. Sandak, B., Wolfson, H. J., et al. (1998). Flexible docking allowing induced fit in proteins: Insights from an open to closed conformational isomers. Proteins 32: 159–74.CrossRefGoogle Scholar
  72. Schultz, J., Milpetz, F., et al. (1998). SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95(11): 5857–64.CrossRefGoogle Scholar
  73. Shatsky, M., Nussinov, R., et al. (2002). MultiProt-aMultiple Protein Structural Alignment Algorithm. Workshop on algorithms in bioinformatics, Springer Verlag. 2452: 235–250.Google Scholar
  74. Shatsky, M., Nussinov, R., et al. (2002). Flexible protein alignment and hinge detection. Proteins 48(2): 242–56.CrossRefGoogle Scholar
  75. Shindyalov, I. N. and Bourne, P. E. (1998). Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng 11(9): 739–47.Google Scholar
  76. Shindyalov, I. N. and Bourne, P. E. (2001). A database and tools for 3-D protein structure comparison and alignment using the Combinatorial Extension (CE) algorithm. Nucleic Acids Res 29(1): 228–9.CrossRefGoogle Scholar
  77. Siddiqui, A. S. and Barton, G. J. (1995). Continuous and discontinuous domains: an algorithm for the automatic generation of reliable protein domain definitions. Protein Sci 4(5): 872–84.Google Scholar
  78. Simons, K. T., Kooperberg, C., et al. (1997). Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol 268(1): 209–25.CrossRefGoogle Scholar
  79. Smith, G. R. and Sternberg, M. J. (2002). Prediction of protein-protein interactions by docking methods. Curr Opin Struct Biol 12(1): 28–35.CrossRefGoogle Scholar
  80. Sowdhamini, R., Burke, D. F., et al. (1998). Protein three-dimensional structural databases: domains, structurally aligned homologues and superfamilies. Acta Crystallogr D Biol Crystallogr 54(Pt 6 Pt 1): 1168–77.Google Scholar
  81. Su, A. I., Lorber, D. M., et al. (2001). Docking molecules by families to increase the diversity of hits in database screens: computational strategy and experimental evaluation. Proteins 42: 279–93.CrossRefGoogle Scholar
  82. Sun, Y., T. J. A. Ewing, et al. (1998). CombiDOCK: structure-based combinatorial docking and library design. J Comput-Aided Mol Des 12: 597–604.Google Scholar
  83. Tamames, J., Casari, G., et al. (1997). Conserved clusters of functionally related genes in two bacterial genomes. J Mol Evol 44(1): 66–73.Google Scholar
  84. Taylor, W. R. and Orengo, C. A. (1989). Protein structure alignment. J Mol Biol 208(1): 1–22.CrossRefGoogle Scholar
  85. Tramontano, A. and Morea, V. (2003). Assessment of homology-based predictions in CASP5. Proteins 53: 352–368.CrossRefGoogle Scholar
  86. Vakser, I.A. (1995). Protein docking for low-resolution structures. Protein Eng 8: 371–7.CrossRefGoogle Scholar
  87. Welch, W., Ruppert, J., et al. (1996). HAMMERHEAD: fast, fully automated docking of flexible ligands to protein binding sites. Chem Biol 3: 449–63.CrossRefGoogle Scholar
  88. Williams, N. (1997). Bioinformatics: how to get databases talking the same language. Science 275: 301–2.Google Scholar
  89. Ye, Y. and Godzik, A. (2003). Flexible structure alignment by chaining aligned fragment pairs allowing twists. Bioinformatics 19Suppl 2: II246–II255.Google Scholar
  90. Zhou, H.X. and Shan, Y. (2001). Prediction of protein interaction sites from sequence profile and residue neighbor list. Proteins 44(3): 336–43.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Hiedelberg 2005

Authors and Affiliations

  • Qing Zhang
    • 1
  • Stella Veretnik
    • 1
  • Philip E. Bourne
    • 1
  1. 1.University of CaliforniaSan DiegoLa JollaUSA

Personalised recommendations