Microarray Data Analysis

  • Alan W. -C. Liew
  • Hong Yan
  • Mengsu Yang
  • Y. -P. Phoebe Chen


Gene Expression Data Independent Component Analysis Boolean Network Microarray Data Analysis Microarray Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akutsu, T., Miyano, S. and Kuhara, S. (2000) Inferring qualitative relations in genetic networks and metabolic pathways. Bioinformatics 16: 727–734.CrossRefGoogle Scholar
  2. Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D. and Levine, A.J. (1999) Gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Nat. Acad. Sci. USA. 96: 6745–6750.CrossRefGoogle Scholar
  3. Alter, O., Brown, P.O., Botstein, D. (2000) Singular value decomposition for genome-wide expression data processing and modeling. Proc. Nat. Acad. Sci. USA. 97: 10101–10106.CrossRefGoogle Scholar
  4. Axon Instruments Inc. GenePix Pro 3. 0, 2001.Google Scholar
  5. Brazma,, A. and Vilo, J. (2000) Minireview: Gene expression data analysis. European Molecular Biology Laboratory, Outstation Hinxton-the European Bioinformatics institute, Cambridge CB10 ISD UK.Google Scholar
  6. Buckley, M. (2002) The Spot User’s Guide. CSIRO Mathematical and Information Sciences, Australia. http://www.cmis.csiro.au/iap/spot.htm.Google Scholar
  7. Buhler, J., Ideker, T., Haynor, D. (2000) Dapple: Improved Techniques for Finding Spots on DNA Microarrays. Technical Report UWTR 2000-08-05, University of Washington.Google Scholar
  8. Butte, A.J., Tamayo, P., Slonim, D., Golub, T.R., and Kohane, I.S. (2000). Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc. Nat. Acad. Sci. USA. 97(22): 12182–12186.CrossRefGoogle Scholar
  9. Chen, T., He, H.L., Church, G.M. (1999) Modeling gene expression with differential equations. Pacific Symposium on Biocomputing 4: 29–40.Google Scholar
  10. Chen, T., Filkov, V. and Skiena, S.S. (1999) Identifying gene regulatory networks from experimental data. Proceedings of the Third Annual International Conference on Computational Molecular Biology RECOMB99, Lyon, France, March 1999, pp 94–103.Google Scholar
  11. Chen, Y., Dougherty, E.R. and Bittner, M.L. (1997) Ratio-based decisions and the Quantitative Analysis of cDNA Microarray Images. J. Biomedical Optics. 2: 364–374.Google Scholar
  12. Chu, S., DeRisi, J., Eisen, M., Mulholland, J., Botstein, D., Brown, P.O. and Herskowitz, I. (1998) The transcriptional program of sporulation in budding yeast. Science 282(5389): 699–705CrossRefGoogle Scholar
  13. Clausi, D.A. (2002). K-means Iterative Fisher (KIF) unsupervised clustering algorithm applied to image texture segmentation. Pattern Recognition 35: 1959–1972.CrossRefMATHGoogle Scholar
  14. D’Haeseleer, P., Wen, X., Fuhrman, S. and Somogyi, R. (1999) Linear modeling of mRNA expression levels during CNS development and injury. Pacific Symposium on Biocomputing 4: 41–52.Google Scholar
  15. D’Haeseleer, P., Liang and S., Somogyi, R. (2000) Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16(8): 707–726.Google Scholar
  16. DeRisi, J.L., Lyer, V.R. and Brown, P.O. (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278: 680–686.CrossRefGoogle Scholar
  17. Duda, R.O., Hart, P.E. and Stork, D.G. (2001). Pattern Classification. Wiley-Interscience, NewYork.Google Scholar
  18. Eisen, M. (1999) ScanAlyze User Manual. Stanford University. http://rana.lbl.gov/EisenSoftware.htm.Google Scholar
  19. Eisen, M.B., Spellman, P.T., Brown, P.O. and Botstein, D. (1998) Cluster analysis and display of genome-wide expression patterns. Proc. Nat. Acad. Sci. USA. 95: 14863–14868.CrossRefGoogle Scholar
  20. Filkov, V., Skiena, S. and Zhi, J. (2002) Analysis Techniques for microarray time series data. J. Comp. Biol. 9(2): 317–330.Google Scholar
  21. Friedman, N., Linial, M., Nachman, I. and Pe’er, D. (2000) Using Bayesian network to analyze expression data. J. Comp. Biol., 7: 601–620.Google Scholar
  22. Glass, L. (1975) Combinatorial and topological methods in nonlinear chemical kinetics. J. Chem. Phys. 63(4): 1325–1335.CrossRefGoogle Scholar
  23. Glass, L. and Pasternack, J.S. (1978) Stable oscillations in mathematical models of biological control systems. J. Math. Biol. 6: 207–223.MathSciNetGoogle Scholar
  24. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D. and Lander, E.S. (1999) Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286: 531–537.CrossRefGoogle Scholar
  25. Hartemink, A.J., Gifford, D.K., Jaakkola, T.S. and Young, R.A. (2002) Combining location and expression data for principled discovery of genetic regulatory network models. Pacific Symposium on Biocomputing 7: 437–449.Google Scholar
  26. Imoto, S., Goto, T. and Miyano, S. (2002a) Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression. Pacific Symposium on Biocomputing 37: 175–186.Google Scholar
  27. Imoto, S., Kim, S., Goto, T., Aburatani, S., Tashiro, K., Kuhara, S. and Miyano, S. (2002b) Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network. Journal of Bioinformatics and Computational Biology, in press. (Preliminary version has appeared in Proc. 1st IEEE Computer Society Bioinformatics Conference, 219–227, 2002).Google Scholar
  28. Holter, N.S., Mitra, M., Maritan, A., Cieplak, M., Banavar, J.R. and Fedoroff, N.V. (2000) Fundamental patterns underlying gene expression profiles: Simplicity from complexity. Proc. Nat. Acad. Sci. USA. 97: 8409–8414.CrossRefGoogle Scholar
  29. Huang, S. (1999) Gene expression profiling, genetic networks, and cellular states: an integrating concept for tumorigenesis and drug discovery. J. Mol. Med. 77: 469–480.Google Scholar
  30. Iyer, V.R., Eisen, M.B., Ross, D.T., Schuler, G., Moore, T., Lee, J.C.F. and Trent, J.M., Staudt, L.M., Hudson, Jr. J., Boguski, M.S., Lashkari, D., Shalon, D., Botstein, D. and Brown, P.O. (1999) The transcriptional program in the response of human fibroblasts to serum. Science 283(5398): 83–97.CrossRefGoogle Scholar
  31. Kauffman, S.A. (1969) Metabolic stability and epigenesist in randomly connected nets. J. Theor. Biol. 22: 437–467.CrossRefMathSciNetGoogle Scholar
  32. Kauffman, S.A. (1993) The origin of order: Self-organization and selection in evolution. Oxford University Press, New York.Google Scholar
  33. Kooperberg, C., Fazzio, T.G., Delrow, J.J. and Tsukiyama, T. (2002) Improved background correction for spotted DNA microarrays. J. Comp. Biol. 9(1): 55–66.Google Scholar
  34. Kwon, A. T, Hoos, H.H. and Ng, R. (2003) Inference of transcriptional regulation relationships from gene expression data. Bioinformatics 19(8): 905–912.CrossRefGoogle Scholar
  35. Liebermeister, W. (2002) Linear modes of gene expression determined by independent component analysis. Bioinformatics 18(1): 51–60.CrossRefGoogle Scholar
  36. Liew, A.W.C., Yan, H. and Yang, M. (2003a) Robust Adaptive Spot Segmentation of DNA Microarray Images. Pattern Recognition 36(5): 1251–1254.Google Scholar
  37. Liew, A.W.C., Szeto, L.K., Tang, S.S. and Yan, H. (2003b) A computational approach to gene expression data extraction and analysis. To appear in special issue on “Genomic Signal Processing”. J. VLSI Signal Processing-Systems for Signal, Image, and Video Technology.Google Scholar
  38. Lockhart, D.J. and Winzeler, E.A. (2000) Genomics, gene expression and DNA arrays. Nature 405: 827–846.CrossRefGoogle Scholar
  39. Marnellos, G., Mjolsness, E. (1998) A gene network approach to modeling early neurogenesis in Drosophila. Pacific Symposium on Biocomputing 3: 30–41.Google Scholar
  40. Marnellos, G., Deblandre, G.A., Mjolsness, E. and Kintner, C. (2000) Delta-Notch lateral inhibitory patterning in the emergence of ciliated cells in Xenopus: experimental observations and a gene network model. Pacific Symposium on Biocomputing 5: 329–340.Google Scholar
  41. Marple, S. (1987) Digital Spectral Analysis with Applications. Prentice Hall Inc., Englewood Cliffs, New Jersey.Google Scholar
  42. Moore, S.K. (2001). Making Chips to probe genes. IEEE Spectrum, March 2001, pp. 54–60.Google Scholar
  43. Packard BioChip Technologies, LLC QuantArray Microarray Analysis SoftwareGoogle Scholar
  44. Perou, C.M., Jeffrey, S.S., van de Rijn, M., Rees, C.A., Eisen, M.B., Ross, D.T., Pergamenschikov, A., Williams, C.F., Zhu, S.X., Lee, J.C.F., Lashkari, D., Shalon, D., Brown, P.O. and Botstein, D. (1999) Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc. Nat. Acad. Sci. USA. 96: 9212–9217.CrossRefGoogle Scholar
  45. Sambrook, J. and Russell, D.W. (2001) Molecular Cloning: A Laboratory Manual. 3rd Ed., Cold Spring Harbor Laboratory Press, New York.Google Scholar
  46. Schena, M., Shalon, D., Davis, R.W. and Brown, P.O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467–470.Google Scholar
  47. Shmulevich, I., Dougherty, E.R. and Zhang, W. (2002a) From Boolean to probabilistic Boolean networks as models of genetic regulatory networks. Proc. IEEE 90(11): 1778–1792.CrossRefGoogle Scholar
  48. Shmulevich, I., Dougherty, E.R., Kim, S. and Zhang, W. (2002b) Probablistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18: 261–274.Google Scholar
  49. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D. and Futcher, B. (1998) Comprehensive Identification of Cell Cycle-regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization. Molecular Biology of the Cell 9: 3273–3297.Google Scholar
  50. Szallasi, Z. and Liang, S. (1998) Modeling the normal and neoplastic cell cycle with realistic Boolean genetic networks: their application for understanding carcinogenesis and assessing therapeutic strategies. Pacific Symposium on Biocomputing 3: 66–76.Google Scholar
  51. Szeto, L.K., Liew, A.W.C., Yan, H. and Tang, S.S. (2003) Gene expression data clustering and visualization based on a binary hierarchical clustering framework. J. Vis. Lang. Computing 14: 341–362.Google Scholar
  52. Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E.S. and Golub, T.R. (1999) Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. Proc. Nat. Acad. Sci. USA. 96: 2907–2912.CrossRefGoogle Scholar
  53. Tang, C., Zhang, L. and Zhang, A. (2002) Interactive visualization and analysis for gene expression data. IEEE Proceedings of the Hawaii International Conference on System Sciences. Big Island, HI. January 2002. 6: 143–166.Google Scholar
  54. Thieffry, D. and Thomas, R. (1998) Qualitative analysis of gene networks. Pacific Symposium on Biocomputing 3: 77–88.Google Scholar
  55. Thomas, R. (1991) Regulatory networks seen as asynchronous automata: a logical description. J. Theor. Biol. 153: 1–23.Google Scholar
  56. Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., and Altman, R.B. (2001) Missing values estimation methods for DNA microarrays. Bioinformatics 17: 520–525.CrossRefGoogle Scholar
  57. Vohradsky, J. (2001a) Neural model of the genetic network. J. Biol. Chem. 276: 36168–36173.CrossRefGoogle Scholar
  58. Vohradsky, J. (2001b) Neural network model of gene expression. Faseb J. 15: 846–854.CrossRefGoogle Scholar
  59. Vu, T.T., Vohradsky, J. (2002) Genexp — a genetic network simulation environment. Bioinformatics 18(10): 1400–1401.CrossRefGoogle Scholar
  60. Wang, X., Ghosh, S. and Guo, S.W. (2001) Quantitative Quality Control in Microarray Image Processing and Data Acquisition. Nucl. Acids Res. 29(15): e75.CrossRefGoogle Scholar
  61. White, K.P., Rifkin, S.A., Hurban, P. and Hogness, D.S. (1999) Microarray analysis of Drosophila development during metamorphosis. Science 286: 2179–2184.Google Scholar
  62. Wolfinger, R.D., Gibson, G., Wolfinger, E.D., Bennett, L., Hamadeh, H., Bushel, P., Afshari, C. and Paules, R.S. (2001) Assessing gene significance from cDNA microarray expression data via mixed models. J. Comp. Biol. 8: 625–637.Google Scholar
  63. Wu, S., Liew, A.W.C., and Yan H. (2004). Cluster Analysis of Gene Expression Data Based on Self-Splitting and Merging Competitive Learning. IEEE Transactions on Information Technology in Biomedicine 8(1): 5–15.CrossRefGoogle Scholar
  64. Wuensche, A. (1999) Classifying cellular automata automatically: Finding gliders, filtering, and relating space-time patterns, attractor basins, and the Z parameter. Complexity 4(3): 47–66.CrossRefMathSciNetGoogle Scholar
  65. Yeung, K.Y. and Ruzzo, W.L. (2001) Principal component analysis for clustering gene expression data. Bioinformatics 17(9): 763–774.CrossRefGoogle Scholar
  66. Yeung, L.K., Szeto, L.K., Liew, A.W.C. and Yan, H. (2003) Dominant spectral component analysis for transcriptional regulations using microarray timeseries data. To appear in Bioinformatics.Google Scholar
  67. Yang, Y.H., Dudoit, S., Luu, P., Lin, D.M., Peng, V., Ngai, J. and Speed, T.P. (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucl. Acids Res. 30(4): e15.CrossRefGoogle Scholar
  68. Zhang, Y.J. and Liu, Z.Q. (2002) Self-Splittng competitive learning: A new online clustering paradigm. IEEE Trans. on neural networks 13: 369–380.Google Scholar

Copyright information

© Springer-Verlag Berlin Hiedelberg 2005

Authors and Affiliations

  • Alan W. -C. Liew
    • 1
  • Hong Yan
    • 1
    • 2
  • Mengsu Yang
    • 3
  • Y. -P. Phoebe Chen
    • 4
  1. 1.Department of Computer Engineering and Information TechnologyCity University of Hong KongKowloonHong Kong
  2. 2.School of Electrical and Information EngineeringUniversity of SydneyAustralia
  3. 3.Department of Biology and ChemistryCity University of Hong KongKowloonHong Kong
  4. 4.School of Information TechnologyDeakin UniversityAustralia

Personalised recommendations