Modeling Localities with Fuzzy Sets and GIS

  • Sungsoon Hwang
  • Jean-Claude Thill


Geographic Information System Spatial Object Triangulate Irregular Network Fuzzy Region Location Determinacy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen JF (1983) Maintaining knowledge about temporal intervals. Communications of the ACM 26(11): 832–843CrossRefGoogle Scholar
  2. Bittner T (1999) On ontology and epistemology of rough location. In: Freksa C, Mark D (eds) Spatial information theory: A theoretical basis for GIS (COSIT’ 99) Lecture Notes in Computer Science (LNCS) Vol 1661, Springer, Hamburg, pp 433–448Google Scholar
  3. Bittner T (2000) A qualitative formalization of built environments. In: Proceedings of DEXA2000, LNCS Vol 1873, Springer-Verlag, Berlin-HeidelbergGoogle Scholar
  4. Burrough P, Frank AU (1996) (eds) Geographic Objects with Indeterminate Boundaries. GISDATA Series II. Taylor and Francis, LondonGoogle Scholar
  5. Duckham M, Mason K, Stell JG, Worboys MF (2001) A formal approach to imperfection in geographic information. Computers, Environment and Urban Systems 25: 89–103CrossRefGoogle Scholar
  6. Egenhofer M, Franzosa R (1991) Point-set topological spatial relations. International Journal of Geographical Information Systems 5(2): 161–174Google Scholar
  7. Fisher P (2000) Sorites paradox and vague geographies. Fuzzy Sets and Systems 113: 7–18CrossRefGoogle Scholar
  8. Erwig M, Schneider M (1997) Vague regions. In: 5th International Symposium on Advances in Spatial Databases (SSD’97), LNCS Vol 1262, Springer, Berlin, pp 298–320Google Scholar
  9. Gahegan M (1995) Proximity operators for qualitative spatial reasoning, In: Frank, AU, and Kuhn W (eds) Spatial Information Theory: A Theoretical Basis for GIS. LNCS Vol 988, Springer, Berlin, Germany, pp 31–44Google Scholar
  10. Golledge RG, Dougherty V, Bell S (1995) Acquiring spatial knowledge: survey versus route-based knowledge in unfamiliar environments. Annals of the Association of American Geographers 85(1): 34–158Google Scholar
  11. Goodchild M (2000) GIS and transportation. Geoinformatica 4(2): 127–140CrossRefGoogle Scholar
  12. Gould P, White R (1986) Mental Maps, Harmondsworth, PenguinGoogle Scholar
  13. Guarino N, Welty C (2000) Ontological analysis of taxonomic relationships. In: Laender A, Storey V (eds) Proceedings of ER-2000: The International Conference on Conceptual Modeling, Lecture Notes in Computer Science (LNCS) Vol 1920, Springer-Verlag, Berlin, pp. 210–224Google Scholar
  14. Guesgen HW, Albrecht J (2000) Imprecise reasoning in geographic information systems. Fuzzy Sets and Systems 113: 121–131CrossRefGoogle Scholar
  15. Hwang S, Thill J-C (2003) Georeferencing historical FARS accident data. A preliminary report. National Center for Geographic Information and Analysis, University at Buffalo, Amherst, NYGoogle Scholar
  16. Johnson-Laird PN, Girotto V, Legrenzi P (1998) Mental Models: A Gentle Guide for Outsiders Scholar
  17. Liu Z-Q, Satur R (1999) Contextual fuzzy cognitive map for decision support in geographic information systems. IEEE Transactions on Fuzzy Systems 7(5): 495–507Google Scholar
  18. NHTSA (1995) FARS 1996 Coding and Validation Manual. National Center for Statistics and Analysis, National Highway Traffic Safety Administration, Department of Transportation, Washington, D.C.Google Scholar
  19. Robinson VB (1988) Some implications of fuzzy set theory applied to geographic databases. Computers, Environment, and Urban Systems 12: 89–97CrossRefGoogle Scholar
  20. Robinson VB (2002) A perspective on geographic information systems and fuzzy sets. In: Proceedings of North American Fuzzy Information Processing Society, IEEE, New Orleans, LA, p 1–6Google Scholar
  21. Schneider M (1999) Uncertainty management for spatial data in databases: fuzzy spatial data types. In: Guting RH, Papadias D, Lochovsky F (eds) SSD’99, LNCS Vol 1651, Springer-Verlag, Heidelberg, pp 330–351Google Scholar
  22. Smith B (1995) On drawing lines on a map. In: Frank AU, Kuhn W (eds) Spatial Information Theory: A Theoretical Basis for GIS. LNCS Vol 988, Springer, Berlin, Germany, pp 475–484Google Scholar
  23. Smith B, Mark DM (1998) Ontology and geographic kinds. In: Proceedings of international symposium on spatial data handling (SDH’98), Vancouver, CanadaGoogle Scholar
  24. Stouffer SA (1940) Intervening opportunities: a theory relating mobility and distance. American Sociological Review 5: 845–867Google Scholar
  25. Stefanakis E, Vazirgiannis M, Sellis T (1999) Incorporating fuzzy set methodologies in a DBMS repository for the application domain of GIS. International Journal of Geographical Information Science 13(7): 657–675Google Scholar
  26. Thill J-C, Sui DZ (1993) Mental maps and fuzzy preferences. Professional Geographer 45: 264–276CrossRefGoogle Scholar
  27. Wang F, Hall GB (1996) Fuzzy representation of geographic boundaries in GIS. International Journal of Geographical Information Systems 10(5): 573–590Google Scholar
  28. Worboys MF (2001) Nearness relations in environmental space. International Journal of Geographical Information Science 15(7): 633–651CrossRefGoogle Scholar
  29. Yao X, Thill J-C (2005) How far is too far? — A statistical approach to contextcontingent proximity modeling. Transactions in GIS 9(2), forthcomingGoogle Scholar
  30. Zadeh LA (1965) Fuzzy sets. Information and Control 8: 338–353CrossRefGoogle Scholar
  31. Zhan FB, Lin H (2003) Overlay of two simple polygons with indeterminate boundaries. Transactions in GIS 7(1): 67–81CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Sungsoon Hwang
    • 1
  • Jean-Claude Thill
    • 1
  1. 1.Department of Geography and National Center for Geographic Information and Analysis (NCGIA)University at Buffalo — The State University of New York at BuffaloBuffalo

Personalised recommendations