Advertisement

Keywords

Wafer Surface Anisotropic Etching Fibre Position Mask Edge Wafer Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Arm91]
    Armiento CA et al. (1991) Passive coupling of InGaAsP/InP laser array and singlemode fibres using silicon waferboard. Electronics Letters 27: 1109–1111Google Scholar
  2. [Asa99]
    Asada N, Takeuchi M (1999) Silicon micro-optical scanner. Transducers ‘99: Proc of the 10th Conf on Solid-State Sensors and Actuators, Japan: 778–781Google Scholar
  3. [Bäck92]
    Bäcklund Y, Rosengreen L (1992) New shapes in (100) Si using KOH and EDP etches. J Micromech Microeng 2: 75–79CrossRefGoogle Scholar
  4. [Bäck93]
    Bäcklund Y, Rosengreen L, Smith L (1993) Optical planes and reflectors, anisotropically etched in silicon. Transducers ‘93: Proc of the 7th Conf on olid-State Sensors and Actuators, Japan: 1031–1033Google Scholar
  5. [Bäck97]
    Bäcklund Y (1997) Micromechanics in optical microsystems — with focus on telecom systems. J Micromech Micreng 7: 93–98CrossRefGoogle Scholar
  6. [Cian00]
    Cianci E et al. (2000) Fabrication and performance of a prism coupled silicon transmission grating for near infrared spectroscopy. Proc of the Micro.tec VDE World Microtechnologies Congress, Germany: 685–689Google Scholar
  7. [Corn91]
    Cornely RH, Marcus RB (1991) Formation of silicon micromirrors by anisotropic etching. Sensors and Actuators A 29: 241–250CrossRefGoogle Scholar
  8. [deLab01]
    de Labachelerie et al. (2001) A micromachined connector for the coupling of optical waveguides and ribbon optical fibres. Sensors and Actuators A 89: 36–42CrossRefGoogle Scholar
  9. [Diet93]
    Dietrich D, Frühauf J (1993) Computer simulation of the development of dish-shaped deepenings by orientation dependent etching of {100}-silicon. Sensors and Actuators A 39: 261–262CrossRefGoogle Scholar
  10. [Frank98]
    Frank T, Wurmus H (1998) A new principle for micro-opto-mechnaical scanners. Micro System Technologies ‘98: Proc of the 6th Int Conf & Exhibition on Micro Electro, Opto, Mechanical Systems and Components, Germany: 177–182Google Scholar
  11. [Früh01]
    Frühauf J, Gärtner E, Jänsch E (2001) Plastic reshaping of silicon microstructures: process, characterisation and application. Microsystem Technologies 7, 4: 155–160CrossRefGoogle Scholar
  12. [Früh1-97]
    Frühauf J, Hannemann B (1997) Mikromechanische und optische Funktions-elemente hergestellt durch anisotropes Ätzen von Silizium. Mikrosystem-technik ‘97: Proc of the 3rd Conf on Mikromechanik & Mikroelektronik, Germany: 88–98Google Scholar
  13. [Früh2-97]
    Frühauf J, Hannemann B, Gerber M (1997) Ätzraten und Oberflächenqualitäten beim Silizium-Ätzen in der Mikrotechnik. Internal Report SMWK-Projektförderung 0380/509, Technische Universität ChemnitzGoogle Scholar
  14. [Früh4-97]
    Frühauf J et al. (1997) Konstruktionselemente der Mikrosystemtechnik, Varianten ihrer ätztechnischen Herstellung und ihr rechnergestützter Entwurf. Final Report AIF-Project 9929B, Technische Universität ChemnitzGoogle Scholar
  15. [Geß96]
    Geßner T et al. (1996) Design, technology and characterization of a mirror-array in silicon-micromechanics. Micro System Technologies ‘96: Proc of the 5th Int Conf & Exhibition on Micro Electro, Opto, Mechanical Systems and Components, Germany: 657–662Google Scholar
  16. [Gonz1-97]
    Gonzáles C, Collins SD (1997) Magnetically actuated fibre-optic switch with micromachined positioning stages. Optics Letters 22, 10: 709–711Google Scholar
  17. [Gör94]
    Göring R, Molzahn U (1994) Miniaturized optical systems for beam deflection and modulation. Micro System Technologies ‘94: Proc of the 4th Conf & Exhibition on Micro Electro, Opto, Mechanical Systems and Components, Germany: 1073–1080Google Scholar
  18. [Gör98]
    Göring R et al. (1998) Complex microprism structures and their application to multichannel fibre optics switches. Proc of SPIE 3276: 167–175Google Scholar
  19. [Graf00]
    Graff JW, Schubert EF (2000) Flat free standing silicon diaphragms using silicon-on-insulator wafers. Sensors and Actuators 84: 276–279CrossRefGoogle Scholar
  20. [Han98]
    Hannemann B, Frühauf J (1998) New and extended possibilities of orientation dependent Etching in Microtechniques. IEEE-MEMS ‘98: Proc of the 11th Int Micro Electro Mechanical Systems Conference, Germany: 234–239Google Scholar
  21. [Har99]
    Hara K et al. (1999) Si micromechanical fibre-optic switch with shape memory alloy microactuator. Transducers ‘99: Proc of the 10th Int Conf on Solid-State Sensors and Actuators, Japan: 790–793Google Scholar
  22. [Hill88]
    Hillerich B, Geyer A (1988) Self-ligned flat-pack fibre-photodiode coupling. Electronics Letters 24: 918–919Google Scholar
  23. [Hill99]
    Hiller K et al. (1999) Fabrication of high frequency microscanners by using low temperature silicon wafer bonding. Transducers ‘99: Proc of the 10th Conf on Solid-State Sensors and Actuators, Japan: 1448–1501Google Scholar
  24. [Hoff03]
    Hoffmann M et al. (2003) Fibre-optical MEMS switches bases on bulk silicon micromachining. Microsystem Technologies 9: 299–303.CrossRefGoogle Scholar
  25. [Hoff1-99]
    Hoffmann M, Kopka P, Voges E (1999) Bistable micromechanical fibre-optic switches on silicon with thermal actuators. Sensors and Actuators 78: 28–35CrossRefGoogle Scholar
  26. [Hoff2-99]
    Hoffmann M, Dickhut S, Voges E (1999) Silicon fibre ribbon Pigtails with rhombus-shaped fibre channels and integrated photodiodes. MOEMS ‘99: Proc of the 3rd Int Conf on Micro Opto Electro Mechanical Systems, Germany: 206–209Google Scholar
  27. [Jac93]
    Jacobs-Cook AJ, Bowen MEC (1993) Novel optical fibre/microresonator interfacing technology. Sensors and Actuators A 37–38: 540–545CrossRefGoogle Scholar
  28. [Kend88]
    Don Kendall L et al. (1988) Chemically etched micromirrors in silicon. Appl Phys Letters 52, 10: 836–837CrossRefGoogle Scholar
  29. [Kend94]
    Don Kendall L et al. (1994) Micromirror arrays using KOH-H2O micromachining of silicon for lens templates, geodesic lenses, and other applications. Optical Engineering 33, 11: 3578–3588Google Scholar
  30. [Klum95]
    Klumpp A et al. (1995) Anisotropic etching for optical gratings. Sensors and Actuators A 51: 77–80CrossRefGoogle Scholar
  31. [Kuhn03]
    Kuhn M et al. (2003) Herstellung und Charakterisierung von mikromechanischen Scannern mit integrierten Beugungsgittern. Mikrosystemtechnik ‘03: Proc of the 6th Conf on Mikromechanik & Mikroelektronik, Germany: 73–78Google Scholar
  32. [Kurth96]
    Kurth S et al. (1998) Silicon mirrors and micromirror arrays for spatial laser beam modulation. Sensors and Actuators A 66: 76–82CrossRefGoogle Scholar
  33. [Lang99]
    Lang W et al. (1999) Electrostatically actuated micromirror devices in silicon technology. Sensors and Actuators 74: 216–218CrossRefGoogle Scholar
  34. [Lehm02]
    Lehmann V, Rönnebeck S (2002) MEMS techniques applied to the fabrication of anti-scatter grids for X-ray imaging. Sensors and Actuators A 95: 202–207CrossRefGoogle Scholar
  35. [Lutz86]
    Lutzke D (1986) Lichtwellenleitertechnik. Pflaum Verlag, MünchenGoogle Scholar
  36. [Maek01]
    Maekoba H et al. (2001) Self-aligned vertical mirror and V-grooves applied to an optical-switch: modeling and optimization of bi-stable operation by electromagnetic actuation. Sensors and Actuators A 87: 172–178CrossRefGoogle Scholar
  37. [Mark93]
    Markert J et al. (1993) Elektrostatischer Mikroaktor. Feinwerktechnik & Meßtechnik 101, 5: 193–196Google Scholar
  38. [Mill97]
    Miller RA et al. (1997) An electromagnetic MEMS 2*2 fibre optic bypass switch. Transducers ‘97: Proc of the 9th Conf on Solid-State Sensors and Actuators, USA: 89–92Google Scholar
  39. [Mita99]
    Mita M et al. (1999) Optical and surface characterization of poly-Si replica mirors for an optical fibre switch. Transducers ‘99: Proc of the 10th Conf on Solid-State Sensors and Actuators, Japan: 1–4Google Scholar
  40. [Neuz95]
    Neuzil P, Serry FM, Maclay GJ (1995) Fabrication of sharp ridges on single crystal silicon wafers. The Electrochemical Society Inc, Extended Abstracts 95–2, 975: 1534–1535Google Scholar
  41. [Ono01]
    Ono H et al. (2001) Fabrication of an electrostatic lens array with separate electrodes and shield membranes using the UV-LIGA process. Transducers ‘01: Proc of the 11th Int Conf on Solid-State Sensors and Actuators, Germany: 4C2.05, 1586–1589Google Scholar
  42. [Rajk95]
    Rajkumar N, McMullin JN (1995) V-groove gratings on silicon for infrared beam splitting. Applied Optics 34: 2556–2559Google Scholar
  43. [Ros1-94]
    Rosengren L, Smith L, Bäcklund Y (1994) Micromachined optical planes and reflectors in silicon. Sensors and Actuators A 41–42: 330–330CrossRefGoogle Scholar
  44. [Ros2-94]
    Rosengren L (1994) Silicon microstructures for biomedical sensor systems. Dissertation Thesis, Uppsala UniversityGoogle Scholar
  45. [Sad97]
    Sadler DJ et al. (1997) Optical reflectivity of micromachined {111}-oriented silicon mirrors for optical input-output couplers. J Micromech Microeng 7: 263–269CrossRefGoogle Scholar
  46. [Seki2-99]
    Sekimura M, Naruse H (1999) Fabrication of 45° optical mirrors on [100] silicon using surfactant-added TMAH solution. Transducers ‘99: Proc of the 10th Conf on Solid-State Sensors and Actuators, Japan: 550–551Google Scholar
  47. [Shie99]
    Shie JS, Yu SH (1999) A micromachined silicon submount package for vertical emission of edge emitting laser diodes. Transducers ‘99: Proc of the 10th Conf on Solid-State Sensors and Actuators, Japan: 1490–1493Google Scholar
  48. [Steck91]
    Steckenborn A et al. (1991) High precision wafer orientation for micromachining. Micro System Technologies ‘91: Proc of the 2nd Int Conf & Exhibition on Micro Electro, Opto, Mechanical Systems and Components, Germany: 467–471Google Scholar
  49. [Stra95]
    Strandman C et al. (1995) Fabrication of 45° mirrors together with well-defined V-grooves using wet anisotropic etching of silicon. J Microelectromechanical Systems 4, 4: 213–219CrossRefGoogle Scholar
  50. [Stra98]
    Strandman C, Bäcklund Y (1998) Passive and fixed alignment of devices using flexible silicon elements formed by selective etching. J Micromech Microeng 8: 39–44CrossRefGoogle Scholar
  51. [Uen95]
    Uenishi Y, Tsugai M, Mehregany M (1995) Micro-opto-mechanical devices fabricated by anisotropic etching of (110) silicon. J Micromech Microeng 5: 305–312CrossRefGoogle Scholar
  52. [Vand95]
    Vandewege J, Tan Q, de Pestel G (1995) A fibre-ribbon positioning device. J Micromech Microeng 5: 313–318CrossRefGoogle Scholar
  53. [Yan01]
    Yang LJ, Liu CW, Chang P (2001) Phase synchronization of micro-mirror arrays using elastic linkages. Sensors and Actuators A 95: 55–60CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations