Advertisement

Orientation Dependent Etching of Silicon

Keywords

Etch Rate Etch Depth Anisotropic Etching Etch Mask Convex Corner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Abu84]
    Abu-Zeid MM (1984) Corner undercutting in anisotropically etched isolation contours. J Electrochem Soc 131,9: 2138–2142Google Scholar
  2. [Ace95]
    Acero MC et al. (1995) Electrochemical etch-stop characteristics of TMAH:IPA solutions. Sensors and Actuators A 46–47: 22–26CrossRefGoogle Scholar
  3. [Alav92]
    Alavi M, Schumacher A, Wagner HJ (1992) Laser machining and anisotropic etching of <111>-silicon for applications in microsystems. Micro System Technologies ‘92: Proc of the 3rd Int Conf & Exhibition on Micro Electro, Opto, Mechanical Systems and Components, Germany: 227–231Google Scholar
  4. [All93]
    Allongue P, Kosta-Kieling V, Gerischer H (1993) Etching of silicon in NaOH solution: II. Electrochemical studies of n-Si(111) and (100) and mechanism of the dissolution. J Electrochem Soc 140: 1018–1026Google Scholar
  5. [Ash98]
    Ashruf CMA et al. (1998) A new contactless electrochemical etchstop based on a gold-silicon-TMAH galvanic cell. Sensors and Actuators A 66: 284–291CrossRefGoogle Scholar
  6. [Bäck92]
    Bäcklund Y, Rosengren (1992) New shapes in (100) Si using KOH and EDP etches. J Micromech Microeng 2/75–79:75–79CrossRefGoogle Scholar
  7. [Bary95]
    Barycka I, Zubel I (1995) Silicon anisotropic etching in KOH-isopropanol etchant. Sensors and Actuators A 48: 229–238CrossRefGoogle Scholar
  8. [Bean78]
    Bean KE (1978) Anisotropic etching of silicon. IEEE Transactions on Electron Devices 10: 1185–1193Google Scholar
  9. [Bey96]
    Beyer V (1996) Anisotropes selektives naßchemisches Ätzen von monokristallinen Siliciummembranen unter Verwendung MeV-implantierter Strukturen. Diploma Thesis, Technische Universität ChemnitzGoogle Scholar
  10. [Chang98]
    Chang WS (1998) A new method to find the <110> crystal orientation on a (100) silicon wafer by preetching process. Micro System Technologies ‘98: 6th Int Conf & Exhibition on Micro Elektro, Opto, Mechanical Systems and Components, Germany: 658–660Google Scholar
  11. [Choi98]
    Choi WK et al. (1998) Characterisation of pyramid formation arising from the TMAH etching of silicon. Sensors and Actuators A 71: 238–243CrossRefGoogle Scholar
  12. [Dor97]
    Dorsch O, Hein A, Obermeier E (1997) Effect of the silicon content of aqueous KOH on the etching behaviour of convex corners in <100> single crystalline silicon. Transducers ‘97: Proc of the 9th Int Conf on Solid-State Sensors and Actuators, USA: 683–686Google Scholar
  13. [Dziu00]
    Dziuban JA (2000) Microwave enhanced fast anisotropic etching of monocrystalline silicon. Sensors and Actuators 85: 133–138CrossRefGoogle Scholar
  14. [Elw98]
    Elwenspoek M, Jansen H (1998) Silicon Micromachining. Cambridge University Press, CambridgeGoogle Scholar
  15. [Ense95]
    Ensell G (1995) Alignment of mask patterns to crystal orientation. Transducers ‘95: Proc of the 8th Int Conf on Solid-State Sensors and Actuators, Sweden: 186–189Google Scholar
  16. [Früh1-93]
    Frühauf J et al. (1993) A simulation tool for orientation dependent etching. J Micromech Microeng 3: 113–115CrossRefGoogle Scholar
  17. [Früh2-93]
    Frühauf J et al. (1993) Entwurfswerkzeuge zur Strukturierung von Silicium-Einkristallscheiben durch nasschemisches Ätzen für Mikrotechnik. Final Report AIF-Project 298D, Technische Universität ChemnitzGoogle Scholar
  18. [Früh1-97]
    Frühauf J, Hannemann B, Gerber M (1997) Ätzraten und Oberflächenqualitäten beim Silizium-Ätzen in der Mikrotechnik. Internal Report SMWK-Projektförderung 0380/509, Technische Universität ChemnitzGoogle Scholar
  19. [Gerl90]
    Gerlach G (1990) A novel mask compensation pattern for etched microstructures with several convex corners. Micro System Technologies ‘90: Proc of the 1st Int Conf & Exhibition on Micro Electro, Opto, Mechanical Systems and Components, Germany: 545–550Google Scholar
  20. [Hah00]
    Hah D, Yoon E, Hong S (2000) An optomechanical pressure sensor using multimode interference couplers with polymer waveguides on a thin p+-Si membrane. Sensors and Actuators 79: 204–210CrossRefGoogle Scholar
  21. [Hein97]
    Hein A, Dorsch O, Obermeier E (1997) Effects of metallic impurities on anisotropic etching of silicon in aqueous KOH-solutions. Transducers ‘97: Proc of the 9th Int Conf on Solid-State Sensors and Actuators, USA: 687–690Google Scholar
  22. [Hesk93]
    Hesketh PJ et al. (1993) Surface free energy model of silicon anisotropic etching. J Electrochem Soc 140, 4: 1080–1085Google Scholar
  23. [Hu01]
    Hu H (2001) The diagnostic micromachined beams on (111) substrate. Sensors and Actuators A 93: 258–265CrossRefGoogle Scholar
  24. [Ios02]
    Iosub R, Moldovan C, Modreanu M (2002) Silicon membranes fabrication by wet anisotropic etching. Sensors and Actuators A 99: 104–111CrossRefGoogle Scholar
  25. [Jacc62]
    Jaccodine RJ (1962) Use of modified free energy theorems to predict equilibrium growing and etching shapes. J Appl Phys 8: 2643–2647CrossRefGoogle Scholar
  26. [Kamp95]
    van Kampen RP, Wolfenbuttel RF (1995) Effects of <110>-oriented corner compensation structures on membrane quality and convex corner integrity in (100)-silicon using aqueous KOH. J Micromech Microeng 5: 91–94CrossRefGoogle Scholar
  27. [Kend85]
    Don Kendall L, de Guel GR (1985) Orientation of the third kind: the coming of age of (110) silicon. In: Fung CD et al. (eds) Micromachining and Micropackaging of Transducers. Elsevier Science Publishers BV Amsterdam, pp 107–124Google Scholar
  28. [Kern81]
    Kern DP, Zarowin CB (1986) Computersimulation of etch front propagation. Proc of the Symposium on Plasma Etching and Deposition, Electrochem Soc, USA: 86–111Google Scholar
  29. [Kim98]
    Kim B, Cho DD (1998) Aqueous KOH-etching of silicon (110): Etch characteristics and compensation methods for convex corners. J Electrochem Soc 145,7: 2499–2508Google Scholar
  30. [Koide91]
    Koide A, Sato K, Tanaka S (1991) Simulation of two-dimensional etch profile of silicon during orientation dependent etching. Proc of the Int IEEE Micro Electro Mechanical Systems (MEMS) Workshop, Japan: 216–220Google Scholar
  31. [Kühl94]
    Kühl K et al. (1994) Bulk micromachining using doping and voltage dependent pn junction etch stop. Micro System Technologies ‘94: Proc of the 4th Int Conf & Exhibition on Micro Electro, Opto, Mechanical Systems and Components, Germany: 323–330Google Scholar
  32. [Lap98]
    Lapadatu D et al. (1998) A model for the etch-stop location on reverse-biased pn junctions. Sensors and Actuators A 66: 259–267Google Scholar
  33. [Li96]
    Li X, Bao M, Shen S (1996) Maskless etching of three-dimensional silicon structures in KOH. Sensors and Actuators A 57: 47–52CrossRefGoogle Scholar
  34. [Li99]
    Li X et al. (1999) <100> masked-maskless etch technology for compositebeam structure. Transducers ‘99: Proc of the 10th Int Conf on Solid-State Sensors and Actuators, Japan: 556–559Google Scholar
  35. [Mar98]
    Marchetti J et al. (1998) Efficient process development for bulk silicon etching using cellular automata simulation techniques. SPIE’s Symposium on Micromachining and Microfabrication, Micromachined Devices and Components, USAGoogle Scholar
  36. [May90]
    Mayer GK et al. (1990) Fabrication of non-underetched convex corners in anisotropic etching of (100)-silicon in aqueous KOH with respect to novel micromechanic elements. J Electrochem Soc 137,12: 3947–3951Google Scholar
  37. [Merl93]
    Merlos A et al. (1993) TMAH-IPA anisotropic etching characteristics. Sensors and Actuators A 37–38: 737–743CrossRefGoogle Scholar
  38. [Off92]
    Offereins HL et al. (1992) Compensating corner undercutting of (100) silicon in KOH. Sensors and Materials 3,3: 127–144Google Scholar
  39. [Pal82]
    Palik ED et al. (1982) Study of the etch stop mechanism in silicon. J Electrochem Soc 129: 2051–2059Google Scholar
  40. [Pal85]
    Palik ED, Bermudez VM, Glembocki OJ (1985) Ellipsometric study of the etch stop mechanism in heavily doped silicon. J Electrochem Soc 132: 132–135Google Scholar
  41. [Pot85]
    Poteat TL (1985) Submicron accuracies in anisotropic etched silicon piece parts — A case study. In: Fung CD et al. (eds) Micromachining and Micropackaging of Transducers. Elsevier Science Publishers BV, Amsterdam, pp 151–158Google Scholar
  42. [Price73]
    Price JB (1973) Anisotropic etching of silicon with KOH-H2O-isopropyl alcohol. In: Huff HR, Burges RR (eds) Semiconductor Silicon. The Electrochemical Society, Princeton, New Jersey, USA, pp 339–353Google Scholar
  43. [Puers90]
    Puers B, Sansen W (1990) Compensation structures for convex corner micromachining in silicon. Sensors and Actuators A 21–23: 1036–1041CrossRefGoogle Scholar
  44. [Robb59]
    Robbins H, Schwartz B (1959) Chemical etching of silicon I. J Electrochem Soc 106: 505–508Google Scholar
  45. [Robb60]
    Robbins H, Schwartz B (1960) Chemical etching of silicon II. J Electrochem Soc 107: 108–111Google Scholar
  46. [Robb76]
    Schwartz B, Robbins H (1976) Chemical etching of silicon IV. J Electrochem Soc 123: 1903–1909Google Scholar
  47. [Sato98]
    Sato K (1998) Characterization of orientation-dependent etching properties of single-crystal silicon: effects of KOH-concentration. Sensors and Actuators A 64: 87–93CrossRefGoogle Scholar
  48. [Sato99]
    Sato K et al. (1999) Anisotropic etching rates of single crystal silicon for TMAH water solution as a function of crystallographic orientation. Sensors and Actuators 73: 131–137CrossRefGoogle Scholar
  49. [Schna91]
    Schnakenberg U, Benecke W, Lange P (1991) TMAHW etchants for silicon micromachining. Transducers ‘91: Proc of the 6th Int Conf on Solid-State Sensors and Actuators, USA, Japan, Switzerland: 815–818Google Scholar
  50. [Schröd92]
    Schröder H, Dorsch O, Obermeier W (1992) An improved method to align etch masks to the <110> crystal orientation. Micro System Technologies ‘96: 5th Int Conf & Exhibition on Micro Electro, Opto, Mechanical Systems and Components, Germany: 651–655Google Scholar
  51. [Schwes96]
    Schwesinger N (1996) The anisotropic etching behaviour of so called isotropic etchants. Micro System Technologies ‘96: 5th Int Conf & Exhibition on Micro Electro, Opto, Mechanical Systems and Components, Germany: 481–486Google Scholar
  52. [Seid1-90]
    Seidel H et al. (1990) Anisotropic etching of crystalline silicon in alkaline solutions. I. Orientation dependence and behaviour of passivation layers. J Electrochem Soc 137: 3612–3626Google Scholar
  53. [Seid2-90]
    Seidel H et al. (1990) Anisotropic eching of crystalline silicon in alkaline solutions. II. Influence of dopants. J Electrochem Soc 137: 3626–3632Google Scholar
  54. [Seid86]
    Seidel H (1986) Der Mechanismus des Siliziumätzens in alkalischen Lösungen. Dissertation Thesis, Freie Universität BerlinGoogle Scholar
  55. [Seid91]
    Seidel H (1991) Isotrope Ätzverfahren. In: Heuberger A (ed) Mikromechanik. Springer, Heidelberg, pp 162–169Google Scholar
  56. [Seki1-99]
    Sekimura M (1999) Anisotropic etching of surfactant added TMAH solution. Proc of the 12th IEEE Int Micro Electro Mechanical Systems Conference (MEMS’99), USA: 650–655Google Scholar
  57. [Shik1-01]
    Shikida M et al. (2001) A new explanation of mask-corner undercut in anisotropic silicon etching: saddle point in etching rate diagram. Transducers ‘01: Proc of the 11th Int Conf on Solid-State Sensors and Actuators, Germany: 648–651Google Scholar
  58. [Steck91]
    Steckenborn A et al. (1991) High precision wafer orientation for micromachining. Micro System Technologies ‘91: Proc of the 2nd Int Conf & Exhibition on Micro Electro, Opto, Mechanical Systems and Components, Germany: 467–471Google Scholar
  59. [Steff00]
    Steffensen L, Than O, Büttgenbach S (2000) BICEPS: a modular environment for the design of micromachined silicon devices. Sensors and Actuators A 79: 76–81CrossRefGoogle Scholar
  60. [Tana03]
    Tanaka H et al. (2003) Fast wet anisotropic etching of Si {100} and {110} with a smooth surface in ultra-high temperature KOH solutions. Transducers ‘03: Proc of the 12th Int Conf on Solid-State Sensors and Actuators, USA: 1675–1678Google Scholar
  61. [Than94]
    Than O, Büttgenbach S (1994) Simulation of anisotropic chemical etching of crystalline silicon using a cellular automata modell. Sensors and Actuators A 45: 85–89CrossRefGoogle Scholar
  62. [Trieu97]
    Trieu HK, Mokwa W (1997) A generalized model describing corner undercutting by the experimental analysis of TMAH-IPA. Proc of the 8th Int Conf on Micro Mechanics Europe MME ‘97, UK: 51–54Google Scholar
  63. [Vang1-96]
    Vangbo M, Bäcklund Y (1996) Precise mask alignment to the crystallographic orientation of silicon wafers using wet anisotropic etching. J Micromech Microeng 6: 279–284CrossRefGoogle Scholar
  64. [Weir75]
    Weirauch DF (1975) Correlation of the anisotropic etching of single-crystal silicon spheres and wafers. J Appl Phys 4: 1478–1483CrossRefGoogle Scholar
  65. [Wu87]
    Wu XP, Ko WH (1987) A study on compensating corner undercutting in anisotropic etching of (100) silicon. Transducers ‘87: Proc of the 4th Int Conf on Solid-State Sensors and Actuators, Tokyo: 126–129Google Scholar
  66. [Yang00]
    Yang H et al. (2000) A novel technique for measuring etch rate distribution of Si. Sensors and Actuators A 79: 136–140CrossRefGoogle Scholar
  67. [Zav94]
    Zavratsky PM et al. (1994) Fabrication of vertical sidewalls by anisotropic etching of silicon (100)-Wafers. J Electrochem Soc 141,11: 3182–3188Google Scholar
  68. [Zhang96]
    Zhang Q, Liu L, Li Z (1996) A new approach to convex corner compensation for anisotropic etching. Sensors and Actuators A 56: 251–254CrossRefGoogle Scholar
  69. [Ziel01]
    Zielke D, Lieske R, Will J Automatic transfer from bulk—silicon technology simulation into the FEM—environment. Transducers ‘01: Proc of the 11th Int Conf on Solid—State Sensors and Actuators, Germany: 272–275Google Scholar
  70. [Ziel95]
    Zielke D, Frühauf J (1995) Determination of rates for orientation dependent etching. Sensors and Actuators A 48: 151–156CrossRefGoogle Scholar
  71. [Ziel97]
    Zielke D, Frühauf J (1997) Complete simulation support for orientation dependent etched MEMS. In: Adey RA, Renaud P (eds) MICROSIM II Simulation and Design of Microsystems and Microstructures. Computational Mechanics Publications, Lausanne, Switzerland, pp 261–270Google Scholar
  72. [Zöb77]
    Zöbisch J (1977) Geometrie und Abtragungsfronten bei chemigrafischen Prozessen in der elektronischen und mikroelektronischen Industrie. Feingeräte—technik 26,11: 493–493Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations