Technological Basis of Bulk-Silicon-Microtechnique


Etch Rate Technological Basis Electroless Plating Wafer Bonding Microsystem Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bhar95]
    Bhardwaj JK, Ashraf H (1995) Advanced silicon etching using high density plasma. SPIE: Proc of Micromach and Microfab Process Technology 2639: 224233Google Scholar
  2. [Bütt91]
    Büttgenbach S (1991) Mikromechanik. B G Teubner, StuttgartGoogle Scholar
  3. [Chung00]
    Chung CK, Lu HC, Jaw TH (2000) High aspect ration silicon trench fabrication by inductively coupled plasma. Microsystem Technologies 6: 106–108CrossRefGoogle Scholar
  4. [Cra01]
    Craciun G et al. (2001) Aspect ratio and crystallographic orientation dependence in deep dry silicon etching at cryogenic temperatures. Transducers ‘01: Proc of the 11th Int Conf on Solid-State Sensors and Actuators, USA, Japan, Switzerland: 612–615Google Scholar
  5. [Elw98]
    Elwenspoek M, Jansen H (1998) Silicon Micromachining. Cambridge University Press, CambridgeGoogle Scholar
  6. [Esa94]
    Esashi M (1994) Encaspsulated micromechanical sensors. Microsystem Technologies 1: 2–9CrossRefGoogle Scholar
  7. [Früh1-99]
    Frühauf J, Gärtner E, Jänsch E (1999) New aspects of the plastic deformation of silicon — prereqisites for the reshaping of silicon microelements. J Applied Physics A 68: 673–679CrossRefGoogle Scholar
  8. [Früh2-99]
    Frühauf J, Gärtner E, Jänsch E (1999) Silicon as a plastic material. J Micromech Microeng 9: 305–312CrossRefGoogle Scholar
  9. [Früh1-00]
    Frühauf J, Gärtner E, Jänsch E (2000) Plastic reshaping of silicon microstructures: process, characterization and application. MicroMat 2000: Proc of the 3rd Int Conf and Poster Exhibition Micromaterials, Germany: 1164–1167Google Scholar
  10. [Gärt1-01]
    Gärtner E et al. (2001) Laser bending of etched silicon microstructures. Microsystem Technologies 7/1: 23–26CrossRefGoogle Scholar
  11. [Gärt2-01]
    Gärtner E, Frühauf J, Jänsch E (2001) Mounting of Si-chips with plastically bent cantilevers. Transducers ‘01: Proc of the 11th Int Conf on Solid-State Sensors and Actuators, Germany: 206–209Google Scholar
  12. [Ger97]
    Gerlach G, Dötzel W (1997) Grundlagen der Mikrosystemtechnik. Hanser Verlag, München WienGoogle Scholar
  13. [Geß95]
    Geßner T, Wiemer M, Hiller K (1997) High precision acceleration sensor in Silicon. Proc of Conf Sensor, Germany: 409–414Google Scholar
  14. [Gös99]
    Gösele U et al. (1999) Wafer bonding for microsystems technologies. Sensors and Actuators A 74: 161–168CrossRefGoogle Scholar
  15. [Gu198]
    Gui C et al. (1998) Fabrication of multi-layer substrates for high aspect ratio single crystalline microstructures. Sensors and Actuators A 70: 61–66CrossRefGoogle Scholar
  16. [Heu91]
    Heuberger A (1991) Mikromechanik. Springer Verlag, Berlin, Heidelberg, New YorkGoogle Scholar
  17. [Jän00]
    Jänsch E, Frühauf J, Gärtner E (2000) Biegebruchfestigkeiten von geätzten und verformten Mikrostrukturen. Freiberger Forschungshefte B321: 238–253Google Scholar
  18. [Kass96]
    Kassing R, Ranglow W (1996) Etching processes for high aspect ratio micro system technology. Microsystem Technologies 3: 20–27CrossRefGoogle Scholar
  19. [Kwon98]
    Kwon K, Park S (1998) A bulk-micromachined three-axis accelerometer using silicon direct bonding technology and polysilicon layer. Sensors and Actuators A 66: 250–255CrossRefGoogle Scholar
  20. [Lärm94]
    Lärmer F, Schilp A (1994) Method of anisotropically etching silicon. US Patent #5501893, German Patent DE4241045Google Scholar
  21. [Lee03]
    Lee KL et al. (2003) Low temperature three-axisaccelerometer for high temperature environments with temperature control of SOI piezoresistors. Sensors and Actuators A 104: 53–60CrossRefGoogle Scholar
  22. [McN00]
    McNie M et al. (2000) High aspect ratio micromaching (HARM) technologies for microinertial devices. Microsystem Technologies 6: 184–188CrossRefGoogle Scholar
  23. [Rich02]
    Richard A, Köhler J, Jonsson K (2002) Weibull fracture probability for characterisation of the anodic bond process. Sensors and Actuators A 99: 304–311CrossRefGoogle Scholar
  24. [Scha91]
    Schade K (1991) Mikroelektroniktechnologie. Verlag Technik, BerlinGoogle Scholar
  25. [Seid86]
    Seidel H (1986) Der Mechanismus des Siliziumätzens in alkalischen Lösungen. Dissertation Thesis, Freie Universität BerlinGoogle Scholar
  26. [Wiem98]
    Wiemer M, Herziger K (1998) Silizium-Waferbonden: Montageprozesse für Silizium-und Glasmaterialien in der Mikromechanik. DVS Verlag, DüsseldorfGoogle Scholar
  27. [Will98]
    Williams KR (1998) Silicon chemical plasma and reactive ion (RIE) etch rates. In: Hull R (ed) Properties of silicon. University Virginia, INSPEC (No. 4): pp 832–842Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations