Advertisement

Group Theoretic Methods in the Theory of Pattern Formation

  • Rudolf Friedrich

Keywords

Pattern Formation Isotropy Subgroup Nonequilibrium System Invariant Polynomial Goldstone Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Haken, Synergetics. An Introduction (Springer-Verlag Berlin, 1983)Google Scholar
  2. 2.
    H. Haken, Advanced Synergetics (Springer-Verlag Berlin, 1983)Google Scholar
  3. 3.
    M. Cross, P. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys. 65, 851 (1993)Google Scholar
  4. 4.
    F.H. Busse, S.C. Müller, Evolution of spontaneous structures in dissipative continuous systems, (Springer, Berlin, 1998)Google Scholar
  5. 5.
    P. Manneville, Dissipative Structures and weak turbulence, (Academic Press, New York 1990)Google Scholar
  6. 6.
    D.H. Sattinger, P.J. Olver, Group theoretic methods in bifurcation theory, (Springer Verlag 1979)Google Scholar
  7. 7.
    M. Field: Equivariant dynamical systems, Trans. Am. Math. Soc. 259(1), 185 (1980)Google Scholar
  8. 8.
    G. Gaeta, Bifurcation and Symmetry breaking, Physics Reports 189, 1 (1990)CrossRefGoogle Scholar
  9. 9.
    M. Golubitsky and D.G. Schaeffer, Singularities and Groups in Bifurcation Theory, Vol. I (Springer Verlag 1985)Google Scholar
  10. 10.
    M. Golubitsky, I. Stewart and D.G. Schaeffer, Singularities and Groups in Bifurcation Theory, Vol. II (Springer Verlag 1988)Google Scholar
  11. 11.
    P. Chossat, R. Lauterbach, Methods in equivariant bifurcations and dynamical systems, (World Scientific 2000)Google Scholar
  12. 12.
    J.D. Crawford, E. Knobloch, Symmetry breaking bifurcations in fluid dynamics, Annu. Rev. Fluid Mech. 23, 341 (1991)Google Scholar
  13. 13.
    V.I. Arnold, Geometrical methods in the theory of ordinary differential equations, (Springer-Verlag Berlin, 1983)Google Scholar
  14. 14.
    G. Dangelmayr and L. Kramer, Mathematical tools for pattern formation, in F.H. Busse, S.C. Müller, Evolution of spontaneous structures in dissipative continuous systems, (Springer, Berlin, 1998)Google Scholar
  15. 15.
    R. Friedrich and H. Haken: Stationary, Wavelike, and Chaotic Thermal Convection in Spherical Geometries, Phys. Rev. A 34, 2100–2120 (1986)CrossRefPubMedGoogle Scholar
  16. 16.
    M. Bestehorn, R. Friedrich: Rotationally invariant order parameter equations for natural patterns in nonequilibrium systems, Phys. Rev. E 59, 2642 (1999)Google Scholar
  17. 17.
    M. Neufeld, R. Friedrich: Model equations for quasi-twodimensional pattern forming systems, Ann. Phys. Fr. 19, 721–733 (1994)Google Scholar
  18. 18.
    G. Küppers, D. Lortz, J. Fluid Mech. 35, 609 (1969)Google Scholar
  19. 19.
    R. Friedrich, M. Fantz, M. Bestehorn, H. Haken, Pattern Formation in Rotating Bénard Convection, Physica D 61, 147–154 (1992)CrossRefGoogle Scholar
  20. 20.
    J.M. Rodriguez, C. Pérez-Garcia, M. Bestehorn, M. Fantz, R. Friedrich, Pattern formation in convection of rotating fluids with broken vertical symmetry, Phys. Rev. A 46, 4729–4735 (1992)CrossRefPubMedGoogle Scholar
  21. 21.
    M. Neufeld, R. Friedrich, H. Haken, Order parameter equation and model equation for high Prandtl number convection in rotating systems, Z. Phys. B 92, 243–256 (1993)CrossRefGoogle Scholar
  22. 22.
    J. Millán-Rodriguez, M. Bestehorn, C. Pérez-Garcia, R. Friedrich, M. Neufeld: Defect motion in rotating fluids, Phys. Rev. Lett. 74, 530–533 (1995)CrossRefPubMedGoogle Scholar
  23. 23.
    M. Neufeld, R. Friedrich, Statistical properties of the heat transport in a model of rotating Bénard convection, Phys. Rev E 51, 2033–2045, (1995)Google Scholar
  24. 24.
    P. Manneville, J. Physic (Paris) 44, 759 (1983)Google Scholar
  25. 25.
    E.D. Siggia, A. Zippelius, Phys. Rev. Lett. 47, 835 (1981)CrossRefGoogle Scholar
  26. 26.
    M. Fantz, M. Bestehorn, R. Friedrich, and H. Haken: Hexagonal and Spiral Patterns of Thermal Convection, Physics Letters A 174, 48–52 (1993)Google Scholar
  27. 27.
    M. Bestehorn, M. Fantz, R. Friedrich, H. Haken, C. Perez-Garcia: Spiral Patterns in thermal convection, Z. Phys. B 88, 93 (1992)CrossRefGoogle Scholar
  28. 28.
    R. Friedrich, Higher Instabilities in Synergetic Systems with Continuous Symmetries, Z. Phys. B 90, 273 (1993)CrossRefGoogle Scholar
  29. 29.
    J.P. Gollub, C.W. Meyer, Symmetry breaking instability on a fluid surface, Physica D 6, 337 (1983)Google Scholar
  30. 30.
    V. Steinberg, G. Ahlers, and D.S. Cannell, Pattern formation and wavenumber selection by Rayleigh-Bénard convection in a cylindrical container, Phys. Scr. 32, 534 (1985)Google Scholar
  31. 31.
    M. Rabaud, Y. Couder, and S. Michalland, Wavelength selection and transients in the one-dimensional array of cells of the printer's instability, Eur. J. Mech. B 10, 253 (1991)Google Scholar
  32. 32.
    G.H. Gunaratne, M. El-Handi, M. Gorman, Asymmetric cells and rotating rings in cellular flames Mod. Phys. Lett. B 10, 1379 (1996)Google Scholar
  33. 33.
    B. Fiedler, B. Sandstede, A. Scheel, C. Wulf: Bifurcation from relative equilibria of noncompact group actions: skew products, meanders, and drifts, Doc. Math. 1, 479 (1996)Google Scholar
  34. 34.
    S. Müller, Experiments on excitation waves, in Nonlinear Physics of Complex Systems, eds. J. Parisi, S.C. Müller, W. Zimmermann (Springer-Verlag Berlin, 1996)Google Scholar
  35. 35.
    F.T. Arecchi, S. Boccaletti, P. Ramazza, Phys. Rep. 328, 1 (1999)CrossRefGoogle Scholar
  36. 36.
    T. Ackemann, W. Lange, Appl. Phys. B: Lasers Opt. 72, 21 (2001)Google Scholar
  37. 37.
    M. Bode and H.-G. Purwins, Physica Pattern formation in reaction-diffusion systems-dissipative solitons in physical systems, D 86, 53 (1995)Google Scholar
  38. 38.
    S. Siegert, R. Friedrich, J. Peinke: Analysis of data sets of stochastic systems, Physics Letters A 234, 275–280 (1998)Google Scholar
  39. 39.
    R. Friedrich, S. Siegert, J. Peinke, S. Lück, M. Siefert, M. Lindemann, J. Raethjen, G. Deuschl, G. Pfister: Extracting model equations from experimental data, Physics Letters A 271, 217 (2000)Google Scholar
  40. 40.
    J. Gradisek, S. Siegert, R. Friedrich, I. Grabec: Analysis of time series from stochastic processes, Phys. Rev. E 62, 3146 (2000)Google Scholar
  41. 41.
    A.W. Liehr, H.U. Bödeker, T.D. Frank, R. Friedrich, H.G. Purwins, Drift bifurcation detection for dissipative solitons, New Journ. of Phys. 5, Art. No. 89 (2003)Google Scholar
  42. 42.
    H.U. Bödeker, M.C. Röttger, A.W. Liehr, T.D. Frank, R. Friedrich, H.G. Purwins, Noise covered drift bifurcation of dissipative solitons in a planar gasdischarge system, Phys. Rev. E 67(5), 056220 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Rudolf Friedrich
    • 1
  1. 1.Institute of Theoretical PhysicsWestfälische Wilhelms-Universität MünsterMünsterGermany

Personalised recommendations