Nonlinear Dynamics and Pattern Formation in Semiconductor Systems

  • Eckehard Schöll


Hopf Bifurcation Pattern Formation Control Force Contact Conductivity Unstable Periodic Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Schöll: Nonlinear spatio-temporal dynamics and chaos in semiconductors (Cambridge University Press, Cambridge, 2001).Google Scholar
  2. 2.
    H. Haken: Synergetics, Introduction and Advanced Topics (Springer, Berlin, Heidelberg 2004)Google Scholar
  3. 3.
    A.S. Mikhailov: Foundations of Synergetics Vol. I (Springer, Berlin, 1994), 2nd ed.Google Scholar
  4. 4.
    F.H. Busse and S.C. Müller: Evolution of spontaneous structures in dissipative continuous systems (Springer, Berlin, 1998).Google Scholar
  5. 5.
    H. Lueder, W. Schottky, and E. Spenke: Zur technischen Beherrschung des Wärmedurchschlags, Naturwiss. 24, 61 (1936).CrossRefGoogle Scholar
  6. 6.
    K.W. Böer and P.L. Quinn: Inhomogeneous field distribution in homogeneous semiconductor s having an N-shaped negative differential conductivity, phys. stat. sol. 17, 307 (1966).Google Scholar
  7. 7.
    A.F. Volkov and S.M. Kogan: Physical phenomena in semiconductors with negative differential conductivity, Sov. Phys. Usp. 11, 881 (1969), [Usp. Phys. Nauk 96, 633 (1968)].Google Scholar
  8. 8.
    E. Pytte and H. Thomas: Soft modes, critical fluctuations, and optical properties for a two-valley model of Gunn-instability semiconductors, Phys. Rev. 179, 431 (1969).CrossRefGoogle Scholar
  9. 9.
    V.L. Bonch-Bruevich, I.P. Zvyagin, and A.G. Mironov: Domain electrical instabilities in semiconductors (Consultant Bureau, New York, 1975).Google Scholar
  10. 10.
    P.T. Landsberg and A. Pimpale: Recombination-induced nonequilibrium phase transitions in semiconductors, J. Phys. C 9, 1243 (1976).CrossRefGoogle Scholar
  11. 11.
    P.T. Landsberg, D.J. Robbins, and E. Schöll: Threshold switching as a generation-recombination induced non-equilibrium phase transition, phys. status solidi (a) 50, 423 (1978).Google Scholar
  12. 12.
    E. Schöll and P.T. Landsberg: Proc. Roy. Soc. A 365, 495 (1979).Google Scholar
  13. 13.
    E. Schöll: Current layers and filaments in a semiconductor model with an impact ionization induced instability, Z. Phys. B 48, 153 (1982).CrossRefGoogle Scholar
  14. 14.
    K. Aoki, T. Kobayashi, and K. Yamamoto: J. Phys. Soc. Jpn. B 51, 2372 (1982).Google Scholar
  15. 15.
    S.W. Teitsworth, R.M. Westervelt, and E.E. Haller: Nonlinear oscillations and chaos in electrical breakdown in Ge, Phys. Rev. Lett. 51, 825 (1983).CrossRefGoogle Scholar
  16. 16.
    E. Schöll: Nonequilibrium Phase Transitions in Semiconductors (Springer, Berlin, 1987).Google Scholar
  17. 17.
    M.P. Shaw, V.V. Mitin, E. Schöll, and H.L. Grubin: The Physics of Instabilities in Solid State Electron Devices (Plenum Press, New York, 1992).Google Scholar
  18. 18.
    J. Peinke, J. Parisi, O. Rössler, and R. Stoop: Encounter with Chaos (Springer, Berlin, Heidelberg, 1992).Google Scholar
  19. 19.
    B.S. Kerner and V.V. Osipov: Autosolitons (Kluwer Academic Publishers, Dordrecht, 1994).Google Scholar
  20. 20.
    F.-J. Niedernostheide (Editor): Nonlinear Dynamics and Pattern Formation in Semiconductors and Devices (Springer, Berlin, 1995).Google Scholar
  21. 21.
    K. Aoki: Nonlinear dynamics and chaos in semiconductors (Institute of Physics Publishing, Bristol, 2000).Google Scholar
  22. 22.
    J.B. Gunn: Instabilities of current in III–V semiconductors, IBM J. Res. Develop. 8, 141 (1964).Google Scholar
  23. 23.
    Z.S. Gribnikov, K. Hess, and G. Kosinovsky: Nonlocal and nonlinear transport in semiconductors: Real-space transfer effects, J. Appl. Phys. 77, 1337 (1995).CrossRefGoogle Scholar
  24. 24.
    L. Esaki and L.L. Chang: New transport phenomenon in a semiconductor superlattice, Phys. Rev. Lett. 33, 495 (1974).CrossRefGoogle Scholar
  25. 25.
    H.G. Schuster: Handbook of chaos control (Wiley-VCH, Weinheim, 1999).Google Scholar
  26. 26.
    E. Ott, C. Grebogi, and J.A. Yorke: Controlling chaos, Phys. Rev. Lett. 64, 1196 (1990).CrossRefPubMedGoogle Scholar
  27. 27.
    K. Pyragas: Continuous control of chaos by self-controlling feedback, Phys. Lett. A 170, 421 (1992).CrossRefGoogle Scholar
  28. 28.
    J.E.S. Socolar, D.W. Sukow, and D.J. Gauthier: Stabilizing unstable periodic orbits in fast dynamical systems, Phys. Rev. E 50, 3245 (1994).CrossRefGoogle Scholar
  29. 29.
    M.E. Bleich and J.E.S. Socolar: Stability of periodic orbits controlled by time-delay feedback, Phys. Lett. A 210, 87 (1996).CrossRefGoogle Scholar
  30. 30.
    W. Just, T. Bernard, M. Ostheimer, E. Reibold, and H. Benner: Mechanism of time-delayed feedback control, Phys. Rev. Lett. 78, 203 (1997).CrossRefGoogle Scholar
  31. 31.
    H. Nakajima: On analytical properties of delayed feedback control of chaos, Phys. Lett. A 232, 207 (1997).CrossRefGoogle Scholar
  32. 32.
    K. Pyragas: Analytical properties and optimization of time-delayed feedback control, Phys. Rev. E 66, 26207 (2002).CrossRefGoogle Scholar
  33. 33.
    W. Just, S. Popovich, A. Amann, N. Baba, and E. Schöll: Improvement of time-delayed feedback control by periodic modulation: analytical theory of Floquet mode control scheme, Phys. Rev. E 67, 026222 (2003).CrossRefGoogle Scholar
  34. 34.
    W. Just, H. Benner, and E. Schöll: Control of chaos by time—delayed feedback: a survey of theoretical and experimental aspects, in Advances in Solid State Phyics, edited by B. Kramer (Springer, Berlin, 2003).Google Scholar
  35. 35.
    E. Schöll and K. Pyragas: Tunable semiconductor oscillator based on self-control of chaos in the dynamic hall effect, Europhys. Lett. 24, 159 (1993).Google Scholar
  36. 36.
    D.P. Cooper and E. Schöll: Tunable real space transfer oscillator by delayed feedback control of chaos, Z. f. Naturforsch. 50a, 117 (1995).Google Scholar
  37. 37.
    G. Franceschini, S. Bose, and E. Schöll: Control of chaotic spatiotemporal spiking by time-delay autosynchronisation, Phys. Rev. E 60, 5426 (1999).CrossRefGoogle Scholar
  38. 38.
    O. Beck, A. Amann, E. Schöll, J.E.S. Socolar, and W. Just: Comparison of time-delayed feedback schemes for spatio-temporal control of chaos in a reaction-diffusion system with global coupling, Phys. Rev. E 66, 016213 (2002).CrossRefGoogle Scholar
  39. 39.
    N. Baba, A. Amann, E. Schöll, and W. Just: Giant improvement of time-delayed feedback control by spatio-temporal filtering, Phys. Rev. Lett. 89, 074101 (2002).CrossRefPubMedGoogle Scholar
  40. 40.
    J. Unkelbach, A. Amann, W. Just, and E. Schöll: Time—delay autosynchronization of the spatio-temporal dynamics in resonant tunneling diodes, Phys. Rev. E 68, 026204 (2003).CrossRefGoogle Scholar
  41. 41.
    J. Schlesner, A. Amann, N.B. Janson, W. Just, and E. Schöll: Self-stabilization of high—frequency oscillations in semiconductor superlattices by time—delay autosynchronization, Phys. Rev. E 68, 066208 (2003).CrossRefGoogle Scholar
  42. 42.
    E. Schöll, A. Amann, M. Rudolf, and J. Unkelbach: Transverse spatio-temporal instabilities in the double barrier resonant tunneling diode, Physica B 314, 113 (2002).CrossRefGoogle Scholar
  43. 43.
    A. Amann, J. Schlesner, A. Wacker, and E. Schöll: Chaotic front dynamics in semiconductor superlattices, Phys. Rev. B 65, 193313 (2002).CrossRefGoogle Scholar
  44. 44.
    A. Wacker and E. Schöll: Criteria for stability in bistable electrical devices with S-or Z-shaped current voltage characteristic, J. Appl. Phys. 78, 7352 (1995).CrossRefGoogle Scholar
  45. 45.
    V. Cheianov, P. Rodin, and E. Schöll: Transverse coupling in bistable resonant-tunneling structures, Phys. Rev. B 62, 9966 (2000).CrossRefGoogle Scholar
  46. 46.
    A.D. Martin, M.L.F. Lerch, P.E. Simmonds, and L. Eaves: Observation of intrinsic tristability in a resonant tunneling structure, Appl. Phys. Lett. 64, 1248 (1994).CrossRefGoogle Scholar
  47. 47.
    W. Just, E. Reibold, H. Benner, K. Kacperski, P. Fronczak, and J. Holyst: Limits of time-delayed feedback control, Phys. Lett. A 254, 158 (1999).CrossRefGoogle Scholar
  48. 48.
    L. Esaki and R. Tsu: Superlattice and negative differential conductivity in semiconductors, IBM J. Res. Develop. 14, 61 (1970).Google Scholar
  49. 49.
    Y. Kawamura, K. Wakita, H. Asahi, and K. Kurumada: Observation of room temperature current oscillation in InGaAs/InAlAs MQW pin diodes, Jpn. J. Appl. Phys. 25, L928 (1986).Google Scholar
  50. 50.
    J. Kastrup, R. Klann, H.T. Grahn, K. Ploog, L.L. Bonilla, J. Galán, M. Kindelan, M. Moscoso, and R. Merlin: Self-oscillations of domains in doped GaAs-AlAs superlattices, Phys. Rev. B 52, 13761 (1995).CrossRefGoogle Scholar
  51. 51.
    K. Hofbeck, J. Grenzer, E. Schomburg, A.A. Ignatov, K.F. Renk, D.G. Pavel'ev, Y. Koschurinov, B. Melzer, S. Ivanov, S. Schaposchnikov, and P.S. Kop'ev: High-frequency self-sustained current oscillation in an Esaki-Tsu superlattice monitored via microwave emission, Phys. Lett. A 218, 349 (1996).CrossRefGoogle Scholar
  52. 52.
    E. Schomburg, R. Scheuerer, S. Brandl, K.F. Renk, D.G. Pavel'ev, Y. Koschurinov, V. Ustinov, A. Zhukov, A. Kovsh, and P.S. Kop'ev: InGaAs/InAlAs superlattice oscillator at 147 GHz, Electronics Letters 35, 1491 (1999).CrossRefGoogle Scholar
  53. 53.
    Y. Zhang, J. Kastrup, R. Klann, K.H. Ploog, and H.T. Grahn: Synchronization and chaos induced by resonant tunneling in GaAs/AlAs superlattices, Phys. Rev. Lett. 77, 3001 (1996).CrossRefPubMedGoogle Scholar
  54. 54.
    K.J. Luo, H.T. Grahn, K.H. Ploog, and L.L. Bonilla: Explosive bifurcation to chaos in weakly coupled semiconductor superlattices, Phys. Rev. Lett. 81, 1290 (1998).CrossRefGoogle Scholar
  55. 55.
    O.M. Bulashenko, K.J. Luo, H.T. Grahn, K.H. Ploog, and L.L. Bonilla: Multifractal dimension of chaotic attractors in a driven semiconductor superlattice, Phys. Rev. B 60, 5694 (1999).CrossRefGoogle Scholar
  56. 56.
    O.M. Bulashenko and L.L. Bonilla: Chaos in resonant-tunneling superlattices, Phys. Rev. B 52, 7849 (1995).CrossRefGoogle Scholar
  57. 57.
    A. Wacker: Semiconductor superlattices: A model system for nonlinear transport, Phys. Rep. 357, 1 (2002).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Eckehard Schöll
    • 1
  1. 1.Institut für Theoretische PhysikTechnische Universität BerlinBerlinGermany

Personalised recommendations