On Symbolic Dynamics of Space-Time Chaotic Models

  • Wolfram Just


Invariant Measure Spin Chain Symbolic Dynamics Symbol Sequence Phase Space Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 1986).Google Scholar
  2. 2.
    H.G. Schuster, Deterministic chaos (VCH, Weinheim, 1995).Google Scholar
  3. 3.
    C. Robinson, Dynamical systems: stability, symbolic dynamics, and chaos (CRC Press, Boca Raton, 1995).Google Scholar
  4. 4.
    C. Beck, F. Schlögl, Thermodynamics of chaotic systems (Cambridge University Press, Cambridge, 1995).Google Scholar
  5. 5.
    D. Ruelle, Thermodynamic formalism (Addison-Wesley, Reading, 1978).Google Scholar
  6. 6.
    A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems (Cambridge University Press, Cambridge, 1996).Google Scholar
  7. 7.
    P. Collet, J.P. Eckmann, Iterated maps on the interval as dynamical systems (Birkhäuser, Basel, 1980).Google Scholar
  8. 8.
    B.L. Hao, Elementary symbolic dynamics and chaos in dissipative systems (World Scientific, Singapore, 1989).Google Scholar
  9. 9.
    P. Walters, An introduction to ergodic theory (Springer, New York, 1982).Google Scholar
  10. 10.
    A. Lasota, M.C. Mackey, Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics (Springer, New York, 1994).Google Scholar
  11. 11.
    H.H. Hasegawa, W.C. Saphir, Unitarity and irreversibility in chaotic systems, Phys. Rev. A 46, 7401 (1992).CrossRefPubMedGoogle Scholar
  12. 12.
    L.A. Bunimovich, Y.G. Sinai, Spacetime chaos in coupled map lattices, Nonlin. 1, 491 (1988).CrossRefGoogle Scholar
  13. 13.
    J. Bricmont, A. Kupiainen, Coupled analytic maps, Nonlin. 8, 379 (1995).CrossRefGoogle Scholar
  14. 14.
    T. Fischer, H.H. Rugh, Transfer operators for coupled analytic maps, Erg. Theor. Dyn. Syst. 20, 109 (2000).CrossRefGoogle Scholar
  15. 15.
    J.P. Eckmann, D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Mod. Phys. 57, 1115 (1985).CrossRefGoogle Scholar
  16. 16.
    R.J. Deissler, K. Kaneko, Velocity-dependent Lyapunov exponents as a measure of chaos for open-flow systems, Phys. Lett. A 119, 397 (1987).CrossRefGoogle Scholar
  17. 17.
    A. Politi, A. Torcini, Towards a Statistical Mechanics of Spatiotemporal Chaos, Phys. Rev. Lett. 69, 3421 (1992).CrossRefPubMedGoogle Scholar
  18. 18.
    M.C. Cross, P.C. Hohenberg, Pattern-formation outside of equilibrium, Rev. Mod. Phys. 65, 851 (1993).CrossRefGoogle Scholar
  19. 19.
    K. Kaneko, Supertransients, spatiotemporal intermittency and stability of fully developed spatiotemporal chaos, Phys. Lett. A 149, 105 (1990).CrossRefGoogle Scholar
  20. 20.
    W. Just, Globally Coupled Maps: Phase Transitions and Synchronization, Physica D 81, 317 (1995).CrossRefGoogle Scholar
  21. 21.
    M. Blank, L. Bunimovich, Multicomponent dynamical systems: SRB measures and phase transitions, Nonlin. 16, 387 (2003).CrossRefGoogle Scholar
  22. 22.
    P. Gaspard, Chaos, Scattering and Statistical Mechanics (Cambridge University Press, Cambridge, 1998).Google Scholar
  23. 23.
    B.C. So, N. Yoshitake, H. Okamoto, H. Mori, Correlations and Spectra of an Intermittent Chaos near Its Onset Point, J. Stat. Phys. 36, 367 (1984).CrossRefGoogle Scholar
  24. 24.
    H. Mori, B.S. So, T. Ose, Time-correlation functions of one-dimensional transformations, Prog. Theor. Phys. 66, 1266 (1981).Google Scholar
  25. 25.
    K. Shobu, T. Ose, H. Mori, Shapes of the Power Spectrum of Intermittent Turbulence near Its Onset Point, Prog. Theor. Phys. 71, 458 (1984).Google Scholar
  26. 26.
    X.J. Wang, Statistical physics of temporal intermittency, Phys.Rev.A 40, 6647 (1989).CrossRefPubMedGoogle Scholar
  27. 27.
    W. Just, H. Fujisaka, Gibbs Measures and Power Spectra for Type I Intermittent Maps, Physica D 64, 98 (1993).CrossRefGoogle Scholar
  28. 28.
    H. Fujisaka, M. Inoue, Statistical-physical theory of multivariate temporal fluctuations: Global characterization and temporal correlation, Phys. Rev. A 41, 5302 (1990).CrossRefPubMedGoogle Scholar
  29. 29.
    H. Mori, H. Hata, T. Horita, T. Kobayashi, Statistical Mechanics of Dynamical Systems, Prog. Theor. Phys. Suppl. 99, 1 (1989).Google Scholar
  30. 30.
    P. Grassberger, R. Badii, A. Politi, Scaling laws for invariant measures on hyperbolic and nonhyperbolic attractors, J. Stat. Phys. 51, 135 (1988).CrossRefGoogle Scholar
  31. 31.
    K. Falconer, Techniques in fractal geometry (Wiley, Chicester, 1997).Google Scholar
  32. 32.
    R. Artuso, E. Aurell, P. Cvitanovich, Recycling of strange sets, Nonlin. 3, 325 (1990).CrossRefGoogle Scholar
  33. 33.
    K. Kaneko, Theory and applications of coupled map lattices (Wiley, Chichester, 1993).Google Scholar
  34. 34.
    K. Kaneko, Pattern dynamics in spatiotemporal chaos, Physica D 34, 1 (1989).CrossRefGoogle Scholar
  35. 35.
    J. Miller, D.A. Huse, Macroscopic equilibrium from microscopic irreversibility in a chaotic coupled map lattice, Phys. Rev. E 48, 2528 (1993).CrossRefGoogle Scholar
  36. 36.
    P. Marcq, H. Chaté, P. Manneville, Universality in Ising-like phase transitions of coupled chaotic maps, Phys. Rev. E 55, 2606 (1997).CrossRefGoogle Scholar
  37. 37.
    W. Just, Equilibrium Phase Transitions in Coupled Map Lattices: A Pedestrian Approach,, J. Stat. Phys. 105, 133 (2001).CrossRefGoogle Scholar
  38. 38.
    A. Torcini, P. Grassberger, A. Politi, Error propagation in extended chaotic systems, J. Phys. A 27, 4533 (1995).CrossRefGoogle Scholar
  39. 39.
    G. Gielis, R.S. MacKay, Coupled map lattices with phase transition, Nonlin. 13, 867 (2000).CrossRefGoogle Scholar
  40. 40.
    W. Just, Analytical Approach for Piecewise Linear Coupled Map Lattices, J. Stat. Phys. 90, 727 (1998).Google Scholar
  41. 41.
    P. Cvitanovich, G.H. Guaratne, I. Procaccia, Topological and metric properties of Henon-type strange attractors, Phys. Rev. A 38, 1503 (1988).CrossRefPubMedGoogle Scholar
  42. 42.
    F. Schmüser, W. Just, H. Kantz, On the relation between coupled map lattices and kinetic Ising models, Phys. Rev. E 61, 3675 (2000).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Wolfram Just
    • 1
  1. 1.School of Mathematical SciencesQueen Mary/University of LondonLondonUK

Personalised recommendations