Lyapunov Instability of Fluids

  • Harald A. Posch
  • Christina Forster


The key assumptions of classical statistical mechanics, ergodicity and mixing, are facilitated by the instability of a phase-space trajectory with respect to small perturbations of the initial conditions. Such perturbations typically grow or shrink exponentially with time, which is described by a set of rate constants, the Lyapunov exponents. The set of all exponents is referred to as the Lyapunov spectrum. Here, we summarize current ideas and methods for the computation and interpretation of the Lyapunov spectra of simple fluids. Systems in equilibrium and in stationary nonequilibrium states are considered. Emphasis is given to hard-particle systems, for which the equilibrium phase-space perturbations associated with small Lyapunov exponents display periodic patterns in space reminiscent of the modes of fluctuating hydrodynamics, the so-called Lyapunov modes. Stationary nonequilibrium states are generated by forcing the system away from equilibrium and, simultaneously, by removing the irreversibly-produced excessive heat with a “thermostat”. Dynamical and stochastic thermostats are considered. The phase-space probability function of dynamically thermostated systems is a multifractal distribution with an information dimension smaller than the phase-space dimension. This is related to the irreversible transport in such systems, and to the Second Law of Thermodynamics. A possible extension of these ideas to stochastically-thermostated nonequilibrium flows is also attempted.


Lyapunov Exponent Reference Trajectory Perturbation Vector Lyapunov Spectrum Stationary Nonequilibrium State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Ruelle, “Irreversibility Revisited”, in Highlights of Mathematical Physics, edited by A. Fokas, J. Halliwell, T. Kibble, and B. Zegarlinski (American Mathematical Society, 2002), p.233.Google Scholar
  2. 2.
    H.A. Posch, W.G. Hoover, “Nonequilibrium molecular dynamics of classical fluids”, in Molecular Liquids: new perspectives in Physics and Chemistry, edited by José J.C. Teixeira-Dias, NATO-ASI Series C: Mathematical & Physical Sciences (Kluwer Academic Publishers, Dordrecht, 1992), p.527.Google Scholar
  3. 3.
    H.A. Posch, Ch. Dellago, W.G. Hoover, O. Kum, “Microscopic Time-Reversibility and Macroscopic Irreversibility-Still a Paradox?”, in Pioneering Ideas for the Physical and Chemical Sciences: Josef Loschmidt's Contributions and Modern Developments in Structural Organic Chemistry, Atomistics, and Statistical Mechanics W. Fleischhacker, T. Sch”onfeld, eds., p. 233–248, Plenum, New York, 1997.Google Scholar
  4. 4.
    W.G. Hoover, Time Reversibility, Computer Simulation, and Chaos, World Scientific, Singapore, 1999.Google Scholar
  5. 5.
    W.G. Hoover, Computational Statistical Mechanics, Elsevier, Amsterdam, 1991.Google Scholar
  6. 6.
    D.J. Evans, G.P. Morriss, Statistical Mechanics of Nonequilibrium Liquids (Academic Press, London, 1990).Google Scholar
  7. 7.
    P. Gaspard, Chaos, Scattering and Statistical Mechanics, Cambridge University Press, Cambridge, 1998.Google Scholar
  8. 8.
    J.R. Dorfman, An Introduction to Chaos in Nonequilibrium Statistical Mechanics, Cambridge University Press, Cambridge 1999.Google Scholar
  9. 9.
    D. Ruelle, “Smooth Dynamics and New Theoretical Ideas in Nonequilibrium Statistical Mechanics”, J. Stat. Phys. 95, 393–468 (1999).CrossRefGoogle Scholar
  10. 10.
    D. Szasz, editor, Hard Ball Systems and the Lorenz Gas, Encyclopedia of the mathematical sciences 101, Springer Verlag, Berlin (2000).Google Scholar
  11. 11.
    V.I. Oseledec, ”A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems”, Trans. Moscow Math. Soc. 19, 197 (1968).Google Scholar
  12. 12.
    J.-P. Eckmann, D. Ruelle, ”Ergodic theory of chaos and strange attractors”, Rev. of Modern Phys. 57, 617 (1985).CrossRefGoogle Scholar
  13. 13.
    E. Ott, Chaos in dynamical systems, Cambridge University Press, Cambridge, 1993.Google Scholar
  14. 14.
    G. Benettin, L. Galgani, A. Giorgilli, J.M. Strelcyn, “Théorie ergodic-Tous les nombres caractéristiques de Lyapunov sant effectivement caculables”, C. R. Acad. Sci., Ser. A 286, 431 (1978).Google Scholar
  15. 15.
    G. Benettin, L. Galgani, A. Giorgilli, J.M. Strelcyn, “Lyapunov Characteristic Exponents for Smooth Dynamical, Systems and for Hamiltonian Systems, A Method for Computing all of them”, Meccanica 15, 9 (1980).CrossRefGoogle Scholar
  16. 16.
    I. Shimada, T. Nagashima, “A numerical approach to ergodic problem of dissipative dynamical systems”, Progr. Theor. Phys. 61, 1605 (1979).Google Scholar
  17. 17.
    A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, “Determining Lyapunov exponents from a time series”, Physica 16 D, 285 (1985).Google Scholar
  18. 18.
    R. Illner, H. Neunzert, “The concept of irreversibility and statistical physics”, Transport Theory and Statistical Physics 16(1), 89 (1987).Google Scholar
  19. 19.
    J.A.G. Roberts, G.R.W. Quispel, “Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems”, Physics Reports 216, 63 (1992).CrossRefGoogle Scholar
  20. 20.
    V.I. Arnold, Mathematical methods of classical mechanics (Springer, Berlin, 1989).Google Scholar
  21. 21.
    D.J. Evans, E.G.D. Cohen, G.P. Morriss, “Viscosity of a fluid from its maximal Lyapunov exponents”, Phys. Rev. A 42, 5990 (1990).CrossRefPubMedGoogle Scholar
  22. 22.
    C. Dellago, H.A. Posch, W.G. Hoover, “Lyapunov instability of hard disks in equilibrium and nonequilibrium steady states”, Phys. Rev. E 53, 1485 (1996).CrossRefGoogle Scholar
  23. 23.
    H.A. Posch, W.G. Hoover, “Lyapunov instability of dense Lennard-Jones fluids”, Phys. Rev. A 38, 473 (1988).CrossRefPubMedGoogle Scholar
  24. 24.
    H.A. Posch, W.G. Hoover, “Large-system phase-space dimensionality loss in stationary heat flows”, Physica D 187, 281 (2004).CrossRefGoogle Scholar
  25. 25.
    J.D. Bernal, S.V. King, in Physics of Simple Liquids, H. N. V. Temperley, J.S. Rowlinson, G.S. Rushbrooke eds., page 231, (North-Holland, Amsterdam, 1968).Google Scholar
  26. 26.
    B.J. Alder, T.E. Wainwright, “Molecules in Motion”, Sci. Am. 201(4), 113 (1959).PubMedGoogle Scholar
  27. 27.
    T. Einwohner, B.J. Alder, “Molecular Dynamics VI. Free-Path Distributions and Collision Rates for Hard-Sphere and Square-Well Molecules”, J. Chem. Phys. 49, 1458 (1968).CrossRefGoogle Scholar
  28. 28.
    J.-P. Hansen, I.R. McDonald, Theory of simple liquids, (Academic Press, London, 1991).Google Scholar
  29. 29.
    T.M. Reed, K.E. Gubbins, Applied Statistical Mechanics, (McGraw Hill, Tokyo, 1973).Google Scholar
  30. 30.
    C. Dellago, H.A. Posch, “Kolmogorov-Sinai entropy and Lyapunov spectra of a hard sphere gas”, Physica A, 240, 68 (1997).CrossRefGoogle Scholar
  31. 31.
    H.A. Posch, R. Hirschl, “Simulation of Billiards and of Hard-Body Fluids”, pages 269–310 in Hard Ball Systems and the Lorenz Gas, edited by D. Szasz, Encyclopedia of the mathematical sciences 101, Springer Verlag, Berlin (2000).Google Scholar
  32. 32.
    W.G. Hoover, H.A. Posch, C. Forster, C. Dellago, M. Zhou, “Lyapunov instability of two-dimensional many-body systems; soft disks, hard disks, and rotors”, J. Stat. Phys. 109, Nos. 3/4, 765 (2002).CrossRefGoogle Scholar
  33. 33.
    C. Forster, R. Hirschl, H.A. Posch, W.G. Hoover, “Perturbed phase-space dynamics of hard-disk fluids”, Physica D 187, 294 (2004).CrossRefGoogle Scholar
  34. 34.
    C. Forster, R. Hirschl, H.A. Posch, “Analysis of Lyapunov modes for hard-disk fluids”, Proceedings for the Math.-Physics conference, Lissabon, July 2003.Google Scholar
  35. 35.
    C. Dellago, H.A. Posch, “Mixing, Lyapunov instability, and the approach to equilibrium in a hard-sphere gas”, Phys. Rev. E 55, R9 (1997).CrossRefGoogle Scholar
  36. 36.
    Lj. Milanović, H.A. Posch, “Localized and delocalized modes in the tangent space dynamics of planar dumbbell fluids”, J. Molec. Liquids, 96–97, 221–244 (2002).Google Scholar
  37. 37.
    Y.G. Sinai, “A remark concerning the thermodynamical limit of the Lyapunov spectrum”, Int. J. of Bifurcation and Chaos Appl. Sci. Eng. 6, 1137 (1996).CrossRefGoogle Scholar
  38. 38.
    D.J. Searles, D.J. Evans, D.J. Isbister, “The number dependence of the maximum Lyapunov exponent”, Physica 240A, 96 (1997).Google Scholar
  39. 39.
    Y.B. Pesin, “Lyapunov characteristic exponents and ergodic properties of smooth dynamical systems with an invariant measure”, Sov. Math. Dokl. 17, 196 (1976).Google Scholar
  40. 40.
    C. Dellago, H.A. Posch, “Lyapunov instability, local curvature and the fluid-solid phase transition in two dimensions”, Physica A, 230, 364 (1996).CrossRefGoogle Scholar
  41. 41.
    H. van Beijeren, J.R. Dorfman, H.A. Posch, C. Dellago, “The Kolmogorov-Sinai entropy for dilute gases in equilibrium”, Phys. Rev. E 56, 5272 (1997).CrossRefGoogle Scholar
  42. 42.
    J.R. Dorfman, A. Latz, H. van Beijeren, “B.B.G.K.Y. Hierarchy Methods for Sums of Lyapunov Exponents for Dilute Gases”, preprint.Google Scholar
  43. 43.
    R. van Zon, H. van Beijeren, C. Dellago, “Largest Lyapunov Exponent for Many Particle Systems at Low Densities”, Phys. Rev. Lett. 80, 2035 (1998).CrossRefGoogle Scholar
  44. 44.
    R. van Zon, H. van Beijeren, J.R. Dorfman, “Kinetic theory estimates for the Kolmogorov-Sinai entropy, and the largest Lyapunov exponents for dilute, hard ball gases and for dilute, random Lorentz gases”, in Hard Ball Systems and the Lorenz Gas, edited by D. Szasz, Encyclopedia of the mathematical sciences 101, Springer Verlag, Berlin (2000).Google Scholar
  45. 45.
    W.G. Hoover, K. Boercker, H.A. Posch, “Large-system hydrodynamic limit for color conductivity in two dimensions”, Phys. Rev. E 57, 3911 (1998).CrossRefGoogle Scholar
  46. 46.
    L. Milanović, H.A. Posch, W.G. Hoover, “What is ‘Liquid'? Understanding the States of Matter”, Molec. Phys., 95, 281 (1998).CrossRefGoogle Scholar
  47. 47.
    J.-P. Eckmann, C. Forster, H.A. Posch, E. Zabey, “Lyapunov modes in hard-disk systems”, J. Stat. Phys., submitted (2004); arXiv: nlin.CD/0404007.Google Scholar
  48. 48.
    T. Taniguchi, G. Morriss, “Time-oscillating Lyapunov modes and autocorrelation functions for quasi-one-dimensional systems”, preprint; arXiv: nlin.CD/0404052.Google Scholar
  49. 49.
    H.A. Posch, W.G. Hoover, “Equilibrium and Nonequilibrium Lyapunov Spectra for Dense Fluids and Solids”, Phys. Rev. A 39, 2175–2188, (1989).CrossRefPubMedGoogle Scholar
  50. 50.
    E. Wilhelm, “Thermodynamic properties of a hard disk fluid with temperature dependent effective hard sphere diameter”, J. Chem. Phys. 60, 3896 (1974).CrossRefGoogle Scholar
  51. 51.
    C. Dellago, W.G. Hoover, H.A. Posch, “Fluctuations, convergence times, correlation functions, and power laws from many-body Lyapunov spectra for soft and hard disks and spheres”, Phys. Ref. E 65, 056216 (2002).CrossRefGoogle Scholar
  52. 52.
    C. Forster, H.A. Posch, “Lyapunov modes in soft-disk systems”, preprint.Google Scholar
  53. 53.
    G. Radons, H. Yang, “Static and dynamic correlations in many-particle Pyapunov vectors”, preprint; arXiv: nlin.CD/0404028.Google Scholar
  54. 54.
    H. Yang, G. Radons, “Lyapunov instabilities of Lennard-Jones fluids”, preprint; arXiv: nlin.CD/0404027.Google Scholar
  55. 55.
    M.S. Green, “Markoff Random Processes and the Statistical Mechanics of Time-Dependent Phenomena”, J. Chem. Phys. 20, 1281 (1952); “Markoff Random Processes and the Statistical Mechanics of Time-Dependent Phenomena. II Irreversible Processes in Fluids”, 22, 398 (1954).CrossRefGoogle Scholar
  56. 56.
    R. Kubo, “Statistical-Mechanical Theory of Irreversible Processes I. General Theory and Simple Applications to Magnetic and Conduction Problems”, J. Phys. Soc. (Jpn.) 12, 570 (1957).Google Scholar
  57. 57.
    R. Zwanzig, “Time-Correlation Functions and Transport Coefficients in Statistical Mechanics”, Ann. Rev. Phys. Chem. 16, 67 (1965).CrossRefGoogle Scholar
  58. 58.
    B.J. Alder, T.E. Wainwright, “Decay of the Velocity Autocorrelation Function”, Phys. Rev. A 1, 18 (1970).CrossRefGoogle Scholar
  59. 59.
    B.J. Alder, E.E. Alley, in Perspectives in Statistical Physics, edited by H. J. Raveche (North-Holland, Amsterdam, 1981), p. 3.Google Scholar
  60. 60.
    W. Loose, G. Ciccotti, “Temperature and temperature control in nonequilibrium-molecular-dynamics simulations of the shear flow of dense liquids”, Phys. Rev. A 45, 3859 (1992).CrossRefPubMedGoogle Scholar
  61. 61.
    W. Loose, S. Hess, “Anisotropy in velocity space induced by transport processes”, Physica A 174, 47 (1991).CrossRefGoogle Scholar
  62. 62.
    K.F. Gauss, “Über ein neues allgemeines Grundgesetz der Mechanik”, Crelles Journ. f. Math. 4 (1829); gesammelte Werke 5, p. 23.Google Scholar
  63. 63.
    A. Sommerfeld, Vorlesungen über Theoretische Physik, Band 1: Mechanik, Akademische Verlagsgesellschaft, Leipzig, 1962.Google Scholar
  64. 64.
    S. Nosé, “A molecular dynamics method for simulations in the canonical ensemble”, Molec. Phys. 52, 255 (1984).Google Scholar
  65. 65.
    S. Nosé, “A unified formulation of the constant temperature molecular dynamics methods”, J. Chem. Phys. 81, 511 (1984).CrossRefGoogle Scholar
  66. 66.
    W.G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions”, Phys. Rev. A 31, 1695 (1985).CrossRefPubMedGoogle Scholar
  67. 67.
    H.A. Posch, W.G. Hoover, F.J. Vesely, “Canonical dynamics of Nosé oscillator: Stability, order, and chaos”, Phys. Rev. A 33, 4253 (1986).CrossRefPubMedGoogle Scholar
  68. 68.
    B.L. Holian, “The character of the nonequilibrium steady state: Beautiful formalism meets ugly reality,” in Monte Carlo and Molecular Dynamics of Condensed Matter Systems, K. Binder and G. Ciccotti, eds., Vol. 49 (Proceedings of the Euroconference on Computer Simulation in Condensed Matter Physics and Chemistry, Italian Physical Society, Bologna, 1996), p.791.Google Scholar
  69. 69.
    B.L. Holian, W.G. Hoover, H.A. Posch, “Resolution of Loschmidt's paradox: The origin of irreversible behavior in reversible atomistic dynamics”, Phys. Rev. Lett. 59, 10 (1987).CrossRefPubMedGoogle Scholar
  70. 70.
    W.G. Hoover, H.A. Posch, B.L. Holian, M.J. Gillan, M. Mareschal, C. Massobrio, “Dissipative irreversibility from Nosé's reversible mechanics”, Molec. Simulation 1, 79 (1997).Google Scholar
  71. 71.
    J. Ramshaw, “Remarks on Non-Hamiltonian Statistical Mechanics”, Europhys. Lett. 59, 319–323 (2002).CrossRefGoogle Scholar
  72. 72.
    B.L. Holian, “Entropy evolution as a guide for replacing the Liouville equation”, Phys. Rev. A 34, 4238 (1986).CrossRefPubMedGoogle Scholar
  73. 73.
    J. Kaplan, J. Yorke, in Functional Differential Equations and the Approximation of Fixed Points, Vol. 730 of Lecture Notes in Mathematics, eds.: H.O. Peitgen, H.O. Walther (Springer-Verlag, Berlin, 1980).Google Scholar
  74. 74.
    B. Moran, W.G. Hoover, “Diffusion in a Periodic Lorentz Gas”, J. Stat. Phys. 48, 709 (1987).CrossRefGoogle Scholar
  75. 75.
    N.I. Chernov, G.L. Eyink, J.L. Lebowitz, Y.G. Sinai, “Derivation of Ohmʻs Law in a Deterministic Mechanical Model”, Phys. Rev. Lett. 70, 2209 (1993).CrossRefPubMedGoogle Scholar
  76. 76.
    H.A. Posch, unpublished.Google Scholar
  77. 77.
    W.G. Hoover, H.A. Posch, C.G. Hoover, “Fluctuations and Asymmetry via Local Lyapunov Instability in the Time-Reversible Doubly-Thermostated Harmonic Oscillator”, J. Chem. Phys. 115, 5744–5750 (2001).CrossRefGoogle Scholar
  78. 78.
    W.G. Hoover, H.A. Posch, “Shear Viscosity via Global Control of Spatio-Temporal Chaos in Two-Dimensional Isoenergetic Dense Fluids, Phys. Rev. E 51, 273–279 (1995).CrossRefGoogle Scholar
  79. 79.
    W.G. Hoover, H.A. Posch, “Second-Law Irreversibility, and Phase-Space Dimensionality Loss, from Time-Reversible Nonequilibrium Steady-State Lyapunov Spectra”, Phys. Rev. E, 49, 1913–1920 (1994).CrossRefGoogle Scholar
  80. 80.
    M.P. Allen, D.J. Tildesley, Computer Simulations of Liquids (Clarendon Press, Oxford, 1987).Google Scholar
  81. 81.
    A.W. Lees, S.F. Edwards, “The computer study of transport processes under extreme conditions”, J. Phys. C5, 1921 (1972).Google Scholar
  82. 82.
    K. Aoki, D. Kusnezov, “Lyapunov Exponents, Transport, and the Extensivity of Dimensionality Loss”, nlin.CD/0204015.Google Scholar
  83. 83.
    J.D. Farmer, E. Ott, J.A. Yorke, “The Dimension of Chaotic Attractors”, Physica 7D, 153–180 (1983).Google Scholar
  84. 84.
    C.P. Dettmann, G.P. Morriss, “Proof of Lyapunov pairing for systems at constant kinetic energy”, Phys. Rev. E 53, R5541 (1996).CrossRefGoogle Scholar
  85. 85.
    S. Sarman, D.J. Evans, G.P. Morriss, “Conjugate-pairing rule and thermal transport coefficient”, Phys. Rev. A 45, 2233 (1992).CrossRefPubMedGoogle Scholar
  86. 86.
    H.A. Posch, W.G. Hoover, “Heat conduction in one-dimensional chains and nonequilibrium Lyapunov spectrum”, Phys. Rev. E, 58, 4344–4350 (1998).CrossRefGoogle Scholar
  87. 87.
    H.A. Posch, R. Hirschl, W.G. Hoover, “Multifractal phase-space distributions for stationary nonequilibrium systems”, in Dynamics: Models and Kinetic Methods for Nonequilibrium Many-Body Systems, J. Karkheck, ed., NATO ASI Series E: Applied Sciences-Vol. 371, p. 169–189 (Kluwer, Dordrecht, 2000).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Harald A. Posch
    • 1
  • Christina Forster
    • 1
  1. 1.Institut für ExperimentalphysikUniversität WienWienAustria

Personalised recommendations