Skip to main content

Comments

  • Chapter
Arnold's Problems
  • 3263 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Comments

1956-1

  1. Yaschenko I. V. Make your dollar bigger now!!! Math. Intelligencer, 1998, 20(2), 38–40.

    Google Scholar 

1956-1 — N. P. Dolbilin

  1. Tarasov A. On Arnold's problem on a “folded rouble”, in preparation.

    Google Scholar 

1958-1 — V. I. Arnold

  1. Arnold V. I. Small denominators and problems of stability of motion in classical and celestial mechanics. Russian Math. Surveys, 1963, 18(6), 85–191.

    Article  Google Scholar 

  2. Kontsevich M. L. Lyapunov exponents and Hodge theory. In: The Mathematical Beauty of Physics (Saclay, 1996). A memorial volume for Claude Itzykson. Editors: J. M. Drouffe and J. B. Zuber. River Edge, NJ: World Scientific, 1997, 318–322. (Adv. Ser. Math. Phys., 24.)

    Google Scholar 

  3. Zorich A. V. How do the leaves of a closed 1-form wind around a surface? In: Pseudoperiodic Topology. Editors: V. Arnold, M. Kontsevich and A. Zorich. Providence, RI: Amer. Math. Soc., 1999, 135–178. (AMS Transl., Ser. 2, 197; Adv. Math. Sci., 46.)

    Google Scholar 

1958-1 — A. V. Zorich

  1. Arnold V. I. Small denominators and problems of stability of motion in classical and celestial mechanics. Russian Math. Surveys, 1963, 18(6), 85–191.

    Article  Google Scholar 

  2. Arnoux P. Thèse, Université de Reims, 1981.

    Google Scholar 

  3. Boshernitzan M. D., Carroll C. R. An extension of Lagrange's theorem to interval exchange transformations over quadratic fields. J. Anal. Math., 1997, 72, 21–44.

    Article  MathSciNet  MATH  Google Scholar 

  4. Forni G. Deviation of ergodic averages for area-preserving flows on surfaces of higher genus. Ann. Math., Ser. 2, 2002, 155(1), 1–103.

    Article  MathSciNet  MATH  Google Scholar 

  5. Katok A. Invariant measures of flows on orientable surfaces. Sov. Math. Dokl., 1973, 14, 1104–1108.

    MATH  Google Scholar 

  6. Katok A. B., SinaĬ Ya. G., Stepin A. M. Theory of dynamical systems and general transformation groups with invariant measure. In: Itogi Nauki i Tekhniki VINITI. Mathematical Analysis, Vol. 13. Moscow: VINITI, 1975, 129–262 (in Russian). [The English translation: J. Sov. Math., 1977, 7, 974–1065.]

    Google Scholar 

  7. Keane M. Interval exchange transformations. Math. Z., 1975, 141, 25–31.

    Article  MathSciNet  MATH  Google Scholar 

  8. Keane M. Non-ergodic interval exchange transformations. Israel J. Math., 1977, 26(2), 188–196.

    Article  MathSciNet  MATH  Google Scholar 

  9. Keynes H., Newton D. A “minimal,” non-uniquely ergodic interval exchange transformation. Math. Z, 1976, 148(2), 101–105.

    Article  MathSciNet  MATH  Google Scholar 

  10. Kontsevich M. L. Lyapunov exponents and Hodge theory. In: The Mathematical Beauty of Physics (Saclay, 1996). A memorial volume for Claude Itzykson. Editors: J. M. Drouffe and J. B. Zuber. River Edge, NJ: World Scientific, 1997, 318–322. (Adv. Ser. Math. Phys., 24.)

    Google Scholar 

  11. Kontsevich M. L., Zorich A. V. Connected components of the moduli spaces of Abelian differentials with prescribed singularities. [Internet: http://www.arXiv.org/abs/math.GT/0201292]

    Google Scholar 

  12. Masur H. Interval exchange transformations and measured foliations. Ann. Math., Ser. 2, 1982, 115(1), 169–200.

    Article  MathSciNet  Google Scholar 

  13. Nogueira A. Almost all interval exchange transformations with flips are nonergodic. Ergod. Theory Dynam. Systems, 1989, 9(3), 515–525.

    MathSciNet  MATH  Google Scholar 

  14. Nogueira A., Rudolph D. Topological weak-mixing of interval exchange maps. Ergod. Theory Dynam. Systems, 1997, 17(5), 1183–1209.

    Article  MathSciNet  MATH  Google Scholar 

  15. Oseledets V. I. The spectrum of ergodic automorphisms. Sov. Math. Dokl., 1966, 7, 776–779.

    MATH  Google Scholar 

  16. Rauzy G. Échanges d'intervalles et transformations induites. Acta Arithm., 1979, 34(4), 315–328.

    MathSciNet  MATH  Google Scholar 

  17. Sataev E. A. On the number of invariant measures for flows on orientable surfaces. Math. USSR, Izv., 1975, 9, 813–830.

    Article  Google Scholar 

  18. SinaĬ Ya. G., Khanin K. M. Mixing for some classes of special flows over rotations of the circle. Funct. Anal. Appl., 1992, 26(3), 155–169.

    Article  MathSciNet  MATH  Google Scholar 

  19. Veech W. A. Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl theorem mod 2. Trans. Amer. Math. Soc., 1969, 140, 1–33.

    Article  MathSciNet  MATH  Google Scholar 

  20. Veech W. A. Interval exchange transformations. J. Anal. Math., 1978, 33, 222–272.

    Article  MathSciNet  MATH  Google Scholar 

  21. Veech W. A. Gauss measures for transformations on the space of interval exchange maps. Ann. Math., Ser. 2, 1982, 115(1), 201–242.

    Article  MathSciNet  Google Scholar 

  22. Zorich A. V. Deviation for interval exchange transformations. Ergod. Theory Dynam. Systems, 1997, 17(6), 1477–1499.

    Article  MathSciNet  MATH  Google Scholar 

  23. Zorich A. V. How do the leaves of a closed 1-form wind around a surface? In: Pseudoperiodic Topology. Editors: V. Arnold, M. Kontsevich and A. Zorich. Providence, RI: Amer. Math. Soc., 1999, 135–178. (AMS Transl., Ser. 2, 197; Adv. Math. Sci., 46.)

    Google Scholar 

1958-2 — S. A. Bogatyĭ

  1. Altschiller-Court N. Modern Pure Solid Geometry. New York: Chelsea, 1964.

    Google Scholar 

  2. BogatyĬ S. A. Equihedral Tetrahedra. Moscow: Moscow Center for Continuous Mathematical Education Press, to appear.

    Google Scholar 

  3. Bogataya S. I., BogatyĬ S. A., Frolkina O. D. Affinity of volume-preserving mappings. Moscow Univ. Math. Bull., 2001, 56(6), 8–13.

    MathSciNet  Google Scholar 

  4. Couderc P., Ballicioni A. Premier livre du tétraèdre. Paris: Gauthier-Villars, 1953.

    Google Scholar 

  5. DubrovskiĬ V. N. One more definition of an equihedral tetrahedron? Kvant, 1983, № 7,51, 63 (in Russian).

    Google Scholar 

  6. Kalinin A. Yu., Tereshin D. A. Stereometry-11. Moscow: Moscow Institute of Physics and Technology Press, 2001 (in Russian).

    Google Scholar 

  7. Kupitz Y. S., Martini H. The Fermat-Torricelli point and isosceles tetrahedra. J. Geometry, 1994, 49(1–2), 150–162.

    Article  MathSciNet  MATH  Google Scholar 

  8. Lenz H. Über einen Satz von June Lester zur Charakterisierung euklidischer Bewegungen. J. Geometry, 1987, 28(2), 197–201.

    Article  MathSciNet  MATH  Google Scholar 

  9. Lester J. A. Martin's theorem for Euclidean n-space and a generalization to the perimeter case. J. Geometry, 1986, 27(1), 29–35.

    Article  MathSciNet  MATH  Google Scholar 

  10. Matizen V. E. Equihedral and skeleton tetrahedra. Kvant, 1983, № 7, 34–38; Appendix to Kvant, 1995, № 1, 74–81 (in Russian).

    Google Scholar 

  11. Ovchinnikov S., Sharygin I. F. Nonstandard problems in stereometry. Kvant, 1979, № 6, 33–38, 58 (in Russian).

    Google Scholar 

  12. Prasolov V. V., Sharygin I. F. Problems in Stereometry. Moscow: Nauka, 1989 (in Russian).

    MATH  Google Scholar 

  13. Prasolov V. V., Tikhomirov V. M. Geometry. Moscow: Moscow Center for Continuous Mathematical Education Press, 1997 (in Russian).

    Google Scholar 

  14. Problem M9. Kvant, 1970, № 10, 42–44 (in Russian).

    Google Scholar 

  15. Sharygin I. F. Adding on a tetrahedron. Kvant, 1976, № 1, 61–64 (in Russian).

    Google Scholar 

  16. Sharygin I. F. Problem M353. Kvant, 1976, № 7, 31–32 (in Russian).

    Google Scholar 

  17. Vasil'ev N. B. Problem M319. Kvant, 1975, № 12, 39–41 (in Russian).

    Google Scholar 

1958-2 — S. M. Gusein-Zade

  1. Problem Book in Analytic Geometry and Linear Algebra. Editor: Yu. M. Smirnov Moscow: Physical and Mathematical Literature Publ., 2000 (in Russian).

    Google Scholar 

1958-2 — M. L. Kontsevich

  1. Shen' A. Entrance examinations to the Mekh-mat. Math. Intelligencer, 1994, 16(4), 6–10.

    MathSciNet  Google Scholar 

  2. Vardi I. Mekh-mat entrance examinations problems. Preprint, Institut des Hautes Études Scientifiques, M/00/06. [Internet: http://www.ihes.fr/PREPRINTS/M00/M00-06.ps.gz]

    Google Scholar 

1958-3 — S. Yu. Yakovenko

  1. Arnold V. I. Dynamics of complexity of intersections. Bol. Soc. Brasil. Mat. (N.S.), 1990, 21(1), 1–10. [The Russian translation in: Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 489–499.]

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold V. I. Dynamics of intersections. In: Analysis, et cetera. Research papers published in honor of Jürgen Moser's 60th birthday. Editors: P. H. Rabinowitz and E. Zehnder. Boston, MA: Academic Press, 1990, 77–84.

    Google Scholar 

  3. Arnold V. I. Bounds for Milnor numbers of intersections in holomorphic dynamical systems. In: Topological Methods in Modern Mathematics. Proceedings of the symposium in honor of John Milnor's sixtieth birthday (Stony Brook, NY, 1991). Editors: L. R. Goldberg and A. V. Phillips. Houston, TX: Publish or Perish, 1993, 379–390.

    Google Scholar 

  4. Novikov D. I., Yakovenko S. Yu. Meandering of trajectories of polynomial vector fields in the affine n-space. Publ. Mat., 1997, 41(1), 223–242.

    MathSciNet  MATH  Google Scholar 

  5. NovikovD. I, Yakovenko S. Yu. Trajectories of polynomial vector fields and ascending chains of polynomial ideals. Ann. Inst. Fourier (Grenoble), 1999, 49(2), 563–609.

    MathSciNet  Google Scholar 

1963-1

  1. Arnold V. I. Small denominators and problems of stability of motion in classical and celestial mechanics. Uspekhi Mat. Nauk, 1963, 18(6), 91–192 (in Russian). [The English translation: Russian Math. Surveys, 1963, 18(6), 85–191.]

    Google Scholar 

1963-1 — V. I. Arnold

  1. Mather J. Arnold diffusion I: Announcement of the results. Preprint, Princeton University, November 25, 2002, 20 pp.

    Google Scholar 

1963-1 — M. B. Sevryuk

  1. Arnold V. I. On the instability of dynamical systems with many degrees of freedom. Sov. Math. Dokl., 1964, 5(3), 581–585. [The Russian original is reprinted in: Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 61–67.]

    Google Scholar 

  2. Arnold V. I., Avez A. Ergodic Problems of Classical Mechanics, 2nd edition. Redwood City, CA: Addison-Wesley, 1989. [The French original 1967.] [The first English edition 1968.]

    MATH  Google Scholar 

  3. Bernard P. Perturbation d'un hamiltonien partiellement hyperbolique. C. R. Acad. Sci. Paris, Sér. I Math., 1996, 323(2), 189–194.

    MathSciNet  MATH  Google Scholar 

  4. Berti M. Some remarks on a variational approach to Arnold's diffusion. Discrete Contin. Dynam. Systems, 1996, 2(3), 307–314.

    Article  MathSciNet  MATH  Google Scholar 

  5. Berti M., Bolle P. Diffusion time and splitting of separatrices for nearly integrable isochronous Hamiltonian systems. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei, Ser. 9, Mat. Appl, 2000, 11(4), 235–243.

    MathSciNet  MATH  Google Scholar 

  6. Berti M., Bolle P. Fast Arnold diffusion in systems with three time scales. Discrete Contin. Dynam. Systems, 2002, 8(3), 795–811.

    Article  MathSciNet  MATH  Google Scholar 

  7. Berti M., Bolle P. A functional analysis approach to Arnold diffusion. Ann. Institut Henri Poincaré, Analyse non linéaire, 2002, 19(4), 395–450.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bessi U. An approach to Arnold's diffusion through the calculus of variations. Nonlinear Anal. Theory Methods Appl., 1996, 26(6), 1115–1135.

    Article  MathSciNet  MATH  Google Scholar 

  9. Bessi U. Arnold's diffusion with two resonances. J. Differ. Equations, 1997, 137(2), 211–239.

    Article  MathSciNet  MATH  Google Scholar 

  10. Bessi U. Arnold's example with three rotators. Nonlinearity, 1997, 10(3), 763–781.

    Article  MathSciNet  MATH  Google Scholar 

  11. Bessi U., Chierchia L., Valdinoci E. Upper bounds on Arnold diffusion times via Mather theory. J. Math. Pures Appl., Sér. 9, 2001, 80(1), 105–129.

    Article  MathSciNet  MATH  Google Scholar 

  12. Bolotin S. V., Treshchëv D. V. Unbounded growth of energy in nonautonomous Hamiltonian systems. Nonlinearity, 1999, 12(2), 365–388.

    Article  MathSciNet  MATH  Google Scholar 

  13. Chierchia L. On the stability problem for nearly-integrable Hamiltonian systems. In: Seminar on Dynamical Systems (St. Petersburg, 1991). Editors: S. B. Kuksin, V. F. Lazutkin and J. Pöschel. Basel: Birkhäuser, 1994, 35–46.

    Google Scholar 

  14. Chierchia L. Arnold instability for nearly-integrable analytic Hamiltonian systems. In: Variational and Local Methods in the Study of Hamiltonian Systems (Trieste, 1994). Editors: A. Ambrosetti and G. F. Dell'Antonio. River Edge, NJ: World Scientific, 1995, 17–33.

    Google Scholar 

  15. Chierchia L. Non-degenerate ‘Arnold diffusion'. Preprint, archived in mp_arc@math.utexas.edu#96-137.

    Google Scholar 

  16. Chierchia L., Gallavotti G. Drift and diffusion in phase space. Ann. Institut Henri Poincaré, Physique théorique, 1994, 60(1), 1–144; erratum: 1998, 68(1), 135.

    MathSciNet  MATH  Google Scholar 

  17. Chierchia L., Valdinoci E. A note on the construction of Hamiltonian trajectories along heteroclinic chains. Forum Math., 2000, 12(2), 247–255.

    Article  MathSciNet  MATH  Google Scholar 

  18. Chirikov B. V. Research in the theory of nonlinear resonance and stochasticity. Preprint of the Novosibirsk Institute for Nuclear Physics, the USSR Academy of Sciences, 1969, №267 (in Russian). [The English translation: CERN Transl., 1971, № 71–40.]

    Google Scholar 

  19. Chirikov B. V. A universal instability of many-dimensional oscillator systems. Phys. Rep., 1979, 52(5), 263–379.

    Article  MathSciNet  Google Scholar 

  20. Chirikov B. V., Ford J, Vivaldi F. Some numerical studies of Arnold diffusion in a simple model. In: Nonlinear Dynamics and the Beam-Beam Interaction (New York, 1979). Editors: M. Month and J. C. Herrera. New York: American Institute of Physics, 1980, 323–340. (AIP Conference Proceedings, 57.)

    Google Scholar 

  21. Chirikov B. V., Vecheslavov V. V. KAM integrability. In: Analysis, et cetera. Research papers published in honor of Jürgen Moser's 60th birthday. Editors: P. H. Rabinowitz and E. Zehnder. Boston, MA: Academic Press, 1990, 219–236.

    Google Scholar 

  22. Chirikov B. V., Vecheslavov V. V. Arnold diffusion in large systems. Zh. Eksp. Teor. Fiz., 1997, 112(3), 1132–1146.

    Google Scholar 

  23. Cresson J. A λ-lemma for partially hyperbolic tori and the obstruction property. Lett. Math. Phys., 1997, 42(4), 363–377.

    Article  MathSciNet  MATH  Google Scholar 

  24. Cresson J. Temps d'instabilité des systèmes hamiltoniens initialement hyperboliques. C. R. Acad. Sci. Paris, Sér I Math., 2001, 332(9), 831–834.

    MathSciNet  MATH  Google Scholar 

  25. Cresson J. The transfer lemma for Graff tori and Arnold diffusion time. Discrete Contin. Dynam. Systems, 2001, 7(4), 787–800.

    Article  MathSciNet  MATH  Google Scholar 

  26. Delshams A., de la Llave R., Seara T. M. A geometric approach to the existence of orbits with unbounded energy in generic periodic perturbations by a potential of generic geodesic flows of \(\mathbb{T}^2 \). Commun. Math. Phys., 2000, 209(2), 353–392.

    MATH  Google Scholar 

  27. Diacu F. N. Featured Review 97h:70014. Math. Reviews, 1997.

    Google Scholar 

  28. Douady R. Stabilité ou instabilité des points fixes elliptiques. Ann. Sci. École Norm. Sup., Sér. 4, 1988, 21(1), 1–46.

    MathSciNet  MATH  Google Scholar 

  29. Efthymiopoulos Ch., Voglis N., Contopoulos G. Diffusion and transient spectra in a 4-dimensional symplectic mapping. In: Analysis and Modelling of Discrete Dynamical Systems (Aussois, 1996). Editors: D. Benest and C. Froeschlé. Amsterdam: Gordon and Breach Sci. Publ., 1998, 91–106. (Advances Discrete Math. Appl., 1.)

    Google Scholar 

  30. Fontich E., Martín P. Construction of some unstable symplectic maps. In: Proceedings of the 2nd Catalan Days on Applied Mathematics (Odeillo, 1995). Editors: M. Sofonea and J.-N. Corvellec. Perpignan: Presses Univ. Perpignan, 1995, 95–103.

    Google Scholar 

  31. Fontich E., Martín P. Arnold diffusion in perturbations of analytic exact symplectic maps. Nonlinear Anal., 2000, 42(8), 1397–1412.

    Article  MathSciNet  MATH  Google Scholar 

  32. Fontich E., Martín P. Differentiable invariant manifolds for partially hyperbolic tori and a lambda lemma. Nonlinearity, 2000, 13(5), 1561–1593.

    Article  MathSciNet  MATH  Google Scholar 

  33. Fontich E., Martín P. Arnold diffusion in perturbations of analytic integrable Hamiltonian systems. Discrete Contin. Dynam. Systems, 2001, 7(1), 61–84.

    MathSciNet  MATH  Google Scholar 

  34. Gadiyak G. V., Izrailev F. M., Chirikov B. V. Numerical experiments on the universal instability in nonlinear oscillator systems (Arnold diffusion). In: Proceedings of the 7th Intern. Conf. on Nonlinear Oscillations (Berlin, 1975); 1977, Vol. II, 1, 315 (in Russian).

    Google Scholar 

  35. Gallavotti G. Arnold's diffusion in isochronous systems. Math. Phys. Anal. Geom., 1999, 1(4), 295–312.

    Article  MathSciNet  MATH  Google Scholar 

  36. Gallavotti G. Hamilton-Jacobi's equation and Arnold's diffusion near invariant tori in a priori unstable isochronous systems. Rend. Semin. Mat. Univ. Politec. Torino, 1999, 55(4), 291–302.

    MathSciNet  Google Scholar 

  37. Gallavotti G., Gentile G., Mastropietro V. Hamilton-Jacobi equation, heteroclinic chains and Arnold diffusion in three time scale systems. Nonlinearity, 2000, 13(2), 323–340.

    Article  MathSciNet  MATH  Google Scholar 

  38. Gallavotti G., Gentile G., Mastropietro V. On homoclinic splitting problems. Physica D, 2000, 137(1–2), 202–204.

    Article  MathSciNet  MATH  Google Scholar 

  39. Haller G. Diffusion at intersecting resonances in Hamiltonian systems. Phys. Lett. A, 1995, 200(1), 34–42.

    Article  MathSciNet  MATH  Google Scholar 

  40. Haller G. Fast diffusion and universality near intersecting resonances. In: Hamiltonian Systems with Three or More Degrees of Freedom (S'Agaró, 1995). Editor: C. Simó. Dordrecht: Kluwer Acad. Publ., 1999, 391–397. (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 533.)

    Google Scholar 

  41. Holmes P. J., Marsden J. E. Mel'nikov's method and Arnold diffusion for perturbations of integrable Hamiltonian systems. J. Math. Phys., 1982, 23(4), 669–675.

    Article  MathSciNet  MATH  Google Scholar 

  42. Holmes P. J., Marsden J. E. Horseshoes and Arnold diffusion for Hamiltonian systems on Lie groups. Indiana Univ. Math. J., 1983, 32(2), 273–309.

    Article  MathSciNet  MATH  Google Scholar 

  43. Izrailev F. M., Chirikov B. V. Stochasticity of the simplest dynamical model with divided phase space. Preprint of the Novosibirsk Institute for Nuclear Physics, the USSR Academy of Sciences, 1968, № 191 (in Russian).

    Google Scholar 

  44. Kozlov V. V., Moshchevitin N. G. On diffusion in Hamiltonian systems. Moscow Univ. Mech. Bull., 1997, 52(5), 18–22.

    MathSciNet  Google Scholar 

  45. Kozlov V. V., Moshchevitin N. G. Diffusion in Hamiltonian systems. Chaos, 1998, 8(1), 245–247.

    Article  MathSciNet  MATH  Google Scholar 

  46. Liao X., Saari D. G., Xia Zh. Instability and diffusion in the elliptic restricted three-body problem. Celest. Mech. Dynam. Astronom., 1998, 70(1), 23–39.

    Article  MathSciNet  MATH  Google Scholar 

  47. Lichtenberg A. J., Lieberman M. A. Regular and Chaotic Dynamics, 2nd edition. New York: Springer, 1992.

    MATH  Google Scholar 

  48. Lieberman M. A. Arnold diffusion in Hamiltonian systems with three degrees of freedom. In: Nonlinear Dynamics (New York, 1979). Editor: R. H. G. Helleman. New York: New York Acad. Sci., 1980, 119–142. (Annals New York Acad. Sci., 357.)

    Google Scholar 

  49. Lochak P. Effective speed of Arnold's diffusion and small denominators. Phys. Lett. A, 1990, 143(1–2), 39–42.

    Article  MathSciNet  Google Scholar 

  50. Lochak P. Canonical perturbation theory via simultaneous approximation. Russian Math. Surveys, 1992, 47(6), 57–133.

    Article  MathSciNet  Google Scholar 

  51. Lochak P. Arnold diffusion; a compendium of remarks and questions. In: Hamiltonian Systems with Three or More Degrees of Freedom (S'Agaró, 1995). Editor: C. Simó. Dordrecht: Kluwer Acad. Publ., 1999, 168–183. (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 533.)

    Google Scholar 

  52. Lochak P. Supplement to “Arnold diffusion: a compendium of remarks and questions.” Preprint, archived in mp_arc@math.utexas.edu#98-293.

    Google Scholar 

  53. MacKay R. S. Transition to chaos for area-preserving maps. In: Nonlinear Dynamics Aspects of Particle Accelerators. Editors: J. M. Jowett, M. Month and S. Turner. Berlin: Springer, 1986, 390–454. (Lecture Notes in Phys., 247.)

    Google Scholar 

  54. MacKay R. S., Meiss J. D., Percival I. C. Transport in Hamiltonian systems. Physica D, 1984, 13(1–2), 55–81.

    Article  MathSciNet  MATH  Google Scholar 

  55. Marco J.-P. Transition le long des chaînes de tores invariants pour les systèmes hamiltoniens analytiques. Ann. Institut Henri Poincaré, Physique théorique, 1996, 64(2), 205–252.

    MathSciNet  MATH  Google Scholar 

  56. Marco J.-P. Dynamics in the vicinity of double resonances. In: Proceedings of the IV Catalan Days of Applied Mathematics (Tarragona, 1998). Editors: C. García, C. Olivé and M. Sanromà. Tarragona: Univ. Rovira Virgili, 1998, 123–137.

    Google Scholar 

  57. Marco J.-P. Transition orbits and transition times along chains of hyperbolic tori. In: Hamiltonian Systems with Three or More Degrees of Freedom (S'Agaró, 1995). Editor: C. Simó. Dordrecht: Kluwer Acad. Publ., 1999, 480–484. (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 533.)

    Google Scholar 

  58. Mastropietro V. Arnold diffusion and the d'Alembert precession problem. Reg. Chaot. Dynamics, 2001, 6(4), 355–375.

    Article  MathSciNet  MATH  Google Scholar 

  59. Moeckel R. Transition tori in the five-body problem. J. Differ. Equations, 1996, 129(2), 290–314.

    Article  MathSciNet  MATH  Google Scholar 

  60. Morbidelli A. Chaotic diffusion in celestial mechanics. Reg. Chaot. Dynamics, 2001, 6(4), 339–353.

    Article  MathSciNet  MATH  Google Scholar 

  61. Nekhoroshev N. N. An exponential estimate of the stability time for Hamiltonian systems close to integrable ones, I. Russian Math. Surveys, 1977, 32(6), 1–65.

    Article  MATH  Google Scholar 

  62. Percival I. C. Chaos in Hamiltonian systems. Proc. Roy. Soc. London, Ser. A, 1987, 413(1844), 131–143.

    Article  MathSciNet  MATH  Google Scholar 

  63. Perfetti P. Fixed point theorems in the Arnold model about instability of the action-variables in phase-space. Discrete Contin. Dynam. Systems, 1998, 4(2), 379–391.

    Article  MathSciNet  MATH  Google Scholar 

  64. Pumariño A., Valls C. Three time scales systems exhibiting persistent Arnold's diffusion. Preprint, archived in mp_arc@math.utexas.edu#99-311.

    Google Scholar 

  65. Rudnev M., Wiggins S. On the use of the Mel'nikov integral in the Arnold diffusion problem. Preprint, archived in mp_arc@math.utexas.edu#97-494.

    Google Scholar 

  66. Rudnev M., Wiggins S. Existence of exponentially small separatrix splittings and homoclinic connections between whiskered tori in weakly hyperbolic near-integrable Hamiltonian systems. Physica D, 1998, 114(1–2), 3–80; erratum: 2000, 145(3–4), 349–354.

    Article  MathSciNet  MATH  Google Scholar 

  67. Rudnev M., Wiggins S. On a partially hyperbolic KAM theorem. Reg. Chaot. Dynamics, 1999, 4(4), 39–58.

    Article  MathSciNet  MATH  Google Scholar 

  68. Rudnev M., Wiggins S. On a homoclinic splitting problem. Reg. Chaot. Dynamics, 2000, 5(2), 227–242.

    Article  MathSciNet  MATH  Google Scholar 

  69. Sevryuk M. B. Featured Review 95b:58056. Math. Reviews, 1995.

    Google Scholar 

  70. Simó C, Valls C. A formal approximation of the splitting of separatrices in the classical Arnold's example of diffusion with two equal parameters. Nonlinearity, 2001, 14(6), 1707–1760.

    Article  MathSciNet  MATH  Google Scholar 

  71. Tennyson J. L., Lieberman M. A., Lichtenberg A. J. Diffusion in near-integrable Hamiltonian systems with three degrees of freedom. In: Nonlinear Dynamics and the Beam-Beam Interaction (New York, 1979). Editors: M. Month and J. C. Herrera. New York: American Institute of Physics Press, 1980, 272–301. (AIP Conference Proceedings, 57.)

    Google Scholar 

  72. Valdinoci E. Families of whiskered tori for a-priori stable/unstable Hamiltonian systems and construction of unstable orbits. Math. Phys. Electron. J., 2000, 6, Paper 2, 30pp. (electronic).

    Google Scholar 

  73. Vivaldi F. Weak instabilities in many-dimensional Hamiltonian systems. Rev. Modern Phys., 1984, 56(4), 737–754.

    Article  MathSciNet  Google Scholar 

  74. Wood B. P., Lichtenberg A. J., Lieberman M. A. Arnold and Arnold-like diffusion in many dimensions. Physica D, 1994, 71(1–2), 132–145.

    Article  MathSciNet  MATH  Google Scholar 

  75. Xia Zh. Arnold diffusion in the elliptic restricted three-body problem. J. Dyn. Differ. Equations, 1993, 5(2), 219–240.

    Article  MATH  Google Scholar 

  76. Xia Zh. Arnold diffusion and oscillatory solutions in the planar three-body problem. J. Differ. Equations, 1994, 110(2), 289–321.

    Article  MATH  Google Scholar 

  77. Xia Zh. Arnold diffusion with degeneracies in Hamiltonian systems. In: Dynamical Systems and Chaos (Hachioji, 1994), Vol. 1: Mathematics, Engineering and Economics. Editors: N. Aoki, K. Shiraiwa and Y. Takahashi. River Edge, NJ: World Scientific, 1995, 278–285.

    Google Scholar 

  78. Xia Zh. Arnold diffusion: a variational construction. In: Proceedings of the International Congress of Mathematicians, Vol.11 (Berlin, 1998). Doc. Math., 1998, Extra Vol. II, 867–877 (electronic).

    Google Scholar 

  79. ZaslavskiĬ G. M. Stochasticity of Dynamical Systems. Moscow: Nauka, 1984 (in Russian).

    MATH  Google Scholar 

  80. ZaslavskiĬ G. M., Chirikov B. V. Stochastic instability of nonlinear oscillations. Uspekhi Fiz. Nauk, 1971, 105(1), 3–39 (in Russian, for the English translation see Physics-Uspekhi).

    Google Scholar 

  81. ZaslavskiĬ G. M., Sagdeev R. Z., Usikov D. A., Chernikov A. A. Minimal chaos, stochastic web, and structures with symmetry of “quasicrystal” type. Uspekhi Fiz. Nauk, 1988, 156(2), 193–251 (in Russian, for the English translation see Physics-Uspekhi).

    Google Scholar 

  82. ZaslavskiĬ G. M., Sagdeev R. Z., Usikov D. A., Chernikov A. A. Weak Chaos and Quasi-regular Patterns. Cambridge: Cambridge University Press, 1991. (Cambridge Nonlinear Sci. Ser., 1.) [The Russian original 1991.]

    MATH  Google Scholar 

  83. ZaslavskiĬ G. M., Zakharov M. Yu., NeĬshtadt A. I., Sagdeev R. Z., Usikov D. A., Chernikov A. A. Multidimensional Hamiltonian chaos. Zh. Eksp. Teor. Fiz., 1989, 96(5), 1563–1586 (in Russian).

    Google Scholar 

1963-2

  1. Arnold V. I. Small denominators and problems of stability of motion in classical and celestial mechanics. Uspekhi Mat. Nauk, 1963, 18(6), 91–192 (in Russian). [The English translation: Russian Math. Surveys, 1963, 18(6), 85–191.]

    Google Scholar 

1963-2 — M. B. Sevryuk

  1. Birkhoff G. D. Dynamical Systems, 2nd edition. Providence, RI: Amer. Math. Soc., 1966. (Amer. Math. Soc. Colloquium Publ., 9.) [The first edition 1927.]

    MATH  Google Scholar 

  2. Chenciner A. La dynamique au voisinage d'un point fixe elliptique conservatif: de Poincaré et Birkhoff à Aubry et Mather. In: Séminaire Bourbaki, 1983–84, 622; Astérisque, 1985, 121–122, 147–170.

    Google Scholar 

  3. Genecand C. Transversal homoclinic orbits near elliptic fixed points of area-preserving diffeomorphisms of the plane. In: Dynamics Reported. Expositions in Dynamical Systems, Vol. 2. Editors: C. K. R. T. Jones, U. Kirchgraber and H.-O. Walther. Berlin: Springer, 1993, 1–30. (Dynam. Report.: Expos. Dynam. Syst., N. S., 2.)

    Google Scholar 

  4. Moser J. Nonexistence of integrals for canonical systems of differential equations. Commun. Pure Appl. Math., 1955, 8(3), 409–436.

    Article  MATH  Google Scholar 

  5. Moser J. Stable and Random Motions in Dynamical Systems, with Special Emphasis on Celestial Mechanics. Princeton, NJ: Princeton University Press, 1973. (Ann. Math. Studies, 77.)

    MATH  Google Scholar 

  6. Zehnder E. Homoclinic points near elliptic fixed points. Commun. Pure Appl. Math., 1973, 26(2), 131–182.

    Article  MathSciNet  MATH  Google Scholar 

1963-3

  1. Arnold V. I. Small denominators and problems of stability of motion in classical and celestial mechanics. Uspekhi Mat. Nauk, 1963, 18(6), 91–192 (in Russian). [The English translation: Russian Math. Surveys, 1963, 18(6), 85–191.]

    Google Scholar 

1963-3 — M. B. Sevryuk

  1. Abad J. J., Koch H. Renormalization and periodic orbits for Hamiltonian flows. Commun. Math. Phys., 2000, 212(2), 371–394.

    Article  MathSciNet  MATH  Google Scholar 

  2. Abad J. J., Koch H., Wittwer P. A renormalization group for Hamiltonians: numerical results. Nonlinearity, 1998, 11(5), 1185–1194.

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold V. I. On the classical perturbation theory and the problem of stability of planetary systems. Sov. Math. Dokl., 1962, 3(4), 1008–1012. [The Russian original is reprinted in: Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 39–45.]

    Google Scholar 

  4. Arnold V. I. Small denominators and problems of stability of motion in classical and celestial mechanics. Russian Math. Surveys, 1963, 18(6), 85–191.

    Article  Google Scholar 

  5. Berretti A., Gentile G. Scaling properties for the radius of convergence of a Lindstedt series: the standard map. J. Math. Pures Appl., Sér. 9, 1999, 78(2), 159–176.

    MathSciNet  MATH  Google Scholar 

  6. Berretti A., Gentile G. Scaling properties for the radius of convergence of Lindstedt series: generalized standard maps. J. Math. Pures Appl., Sér. 9, 2000, 79(7), 691–713.

    Article  MathSciNet  MATH  Google Scholar 

  7. Berretti A., Gentile G. Bryuno function and the standard map. Commun. Math. Phys., 2001, 220(3), 623–656.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonetto F., Gentile G. On a conjecture for the critical behaviour of KAM tori. Math. Phys. Electron. J., 1999, 5, Paper 4, 8 pp. (electronic).

    Google Scholar 

  9. Broer H. W., Dumortier F., van Strien S. J., Takens F. Structures in Dynamics (Finite Dimensional Deterministic Studies). Amsterdam: North-Holland, Elsevier, 1991. (Studies Math. Phys., 2.)

    MATH  Google Scholar 

  10. Broer H. W., Huitema G. B., Sevryuk M. B. Quasi-Periodic Motions in Families of Dynamical Systems: Order amidst Chaos. Berlin: Springer, 1996. (Lecture Notes in Math., 1645.)

    Google Scholar 

  11. Celletti A. Rigorous and numerical determination of rotational invariant curves for the standard map. In: Analysis and Modelling of Discrete Dynamical Systems (Aussois, 1996). Editors: D. Benest and C. Froeschlé. Amsterdam: Gordon and Breach Sci. Publ., 1998, 149–180. (Advances Discrete Math. Appl., 1.)

    Google Scholar 

  12. Celletti A., Chierchia L. Rigorous estimates for a computer-assisted KAM theory. J. Math. Phys., 1987, 28(9), 2078–2086.

    Article  MathSciNet  MATH  Google Scholar 

  13. Celletti A., Chierchia L. Construction of analytic KAM surfaces and effective stability bounds. Commun. Math. Phys., 1988, 118(1), 119–161.

    Article  MathSciNet  MATH  Google Scholar 

  14. Celletti A., Chierchia L. A constructive theory of Lagrangian tori and computer-assisted applications. In: Dynamics Reported. Expositions in Dynamical Systems, Vol. 4. Editors: C. K. R. T. Jones, U. Kirchgraber and H.-O. Walther. Berlin: Springer, 1995, 60–129. (Dynam. Report.: Expos. Dynam. Syst., N. S., 4.)

    Google Scholar 

  15. Celletti A., Chierchia L. KAM stability estimates in Celestial Mechanics. Planetary Space Sci., 1998, 46(11–12), 1433–1440.

    Article  Google Scholar 

  16. Celletti A., Falcolini C., Porzio A. Rigorous KAM stability statements for nonautonomous one-dimensional Hamiltonian systems. Rend. Semin. Mat. Univ. Politec. Torino, 1987, 45(1), 43–70.

    MathSciNet  MATH  Google Scholar 

  17. Celletti A., Falcolini C., Porzio A. Rigorous numerical stability estimates for the existence of KAM tori in a forced pendulum. Ann. Institut Henri Poincaré, Physique théorique, 1987, 47(1), 85–111.

    MathSciNet  MATH  Google Scholar 

  18. Celletti A., Froeschlé C. On the determination of the stochasticity threshold of invariant curves. Intern. J. Bifurcation and Chaos, 1995, 5(6), 1713–1719.

    Article  MATH  Google Scholar 

  19. Celletti A., Giorgilli A., Locatelli U. Improved estimates on the existence of invariant tori for Hamiltonian systems. Nonlinearity, 2000, 13(2), 397–412.

    Article  MathSciNet  MATH  Google Scholar 

  20. Chandre C., Govin M., Jauslin H. R. Kolmogorov-Arnold-Moser renormalization-group approach to the breakup of invariant tori in Hamiltonian systems. Phys. Rev. E, Ser. 3, 1998, 57(2), part A, 1536–1543.

    Article  MathSciNet  Google Scholar 

  21. Chandre C., Govin M., Jauslin H. R., Koch H. Universality for the breakup of invariant tori in Hamiltonian flows. Phys. Rev. E, Ser. 3, 1998, 57(6), 6612–6617.

    Article  MathSciNet  Google Scholar 

  22. Chandre C., Laskar J., Benfatto G., Jauslin H. R. Determination of the threshold of the break-up of invariant tori in a class of three frequency Hamiltonian systems. Physica D, 2001, 154(3–4), 159–170.

    Article  MathSciNet  MATH  Google Scholar 

  23. Chenciner A. La dynamique au voisinage d'un point fixe elliptique conservatif: de Poincaré et Birkhoff à Aubry et Mather. In: Séminaire Bourbaki, 1983–84, 622; Astérisque, 1985, 121–122, 147–170.

    Google Scholar 

  24. Gallavotti G., Gentile G., Mastropietro V. Field theory and KAM tori. Math. Phys. Electron. J., 1995, 1, Paper 5, 13 pp. (electronic).

    Google Scholar 

  25. Gentile G., Mastropietro V. A possible mechanism for the KAM tori breakdown. In: Hamiltonian Systems with Three or More Degrees of Freedom (S'Agaró, 1995). Editor: C. Simó. Dordrecht: Kluwer Acad. Publ., 1999, 372–376. (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 533.)

    Google Scholar 

  26. Greene J. M. A method for determining a stochastic transition. J. Math. Phys., 1979, 20(6), 1183–1201.

    Article  Google Scholar 

  27. Koch H. A renormalization group for Hamiltonians, with applications to KAM tori. Ergod. Theory Dynam. Systems, 1999, 19(2), 475–521.

    Article  MATH  Google Scholar 

  28. Koch H. On the renormalization of Hamiltonian flows, and critical invariant tori. Discrete Contin. Dynam. Systems, 2002, 8(3), 633–646.

    Article  MATH  Google Scholar 

  29. Locatelli U., Froeschlé C., Lega E., Morbidelli A. On the relationship between the Bruno function and the breakdown of invariant tori. Physica D, 2000, 139(1–2), 48–71.

    Article  MathSciNet  MATH  Google Scholar 

  30. MacKay R. S. Transition to chaos for area-preserving maps. In: Nonlinear Dynamics Aspects of Particle Accelerators. Editors: J. M. Jowett, M. Month and S. Turner. Berlin: Springer, 1986, 390–454. (Lecture Notes in Phys., 247.)

    Google Scholar 

  31. MacKay R. S. Renormalisation in Area-Preserving Maps. River Edge, NJ: World Scientific, 1993.

    MATH  Google Scholar 

  32. MacKay R. S., Meiss J. D., Percival I. C. Transport in Hamiltonian systems. Physica D, 1984, 13(1–2), 55–81.

    Article  MathSciNet  MATH  Google Scholar 

  33. MacKay R. S., Percival I. C. Converse KAM: theory and practice. Commun. Math. Phys., 1985, 98(4), 469–512.

    Article  MathSciNet  MATH  Google Scholar 

  34. Markus L., Meyer K. R. Generic Hamiltonian dynamical systems are neither integrable nor ergodic. Mem. Amer. Math. Soc., 1974, 144, 1–52.

    MathSciNet  Google Scholar 

  35. Mather J. N., Forni G. Action minimizing orbits in Hamiltonian systems. In: Transition to Chaos in Classical and Quantum Mechanics. Editor: S. Graffi. Berlin: Springer, 1994, 92–186. (Lecture Notes in Math., 1589.)

    Chapter  Google Scholar 

  36. Meiss J. D. Symplectic maps, variational principles, and transport. Rev. Modern Phys., 1992, 64(3), 795–848.

    Article  MathSciNet  MATH  Google Scholar 

  37. Olvera A., Simó C. An obstruction method for the destruction of invariant curves. Physica D, 1987, 26(1–3), 181–192.

    Article  MathSciNet  MATH  Google Scholar 

  38. Percival I. C. Chaos in Hamiltonian systems. Proc. Roy. Soc. London, Ser. A, 1987, 413(1844), 131–143.

    Article  MathSciNet  MATH  Google Scholar 

  39. Pöschel J. On small divisors with spatial structure. Habilitationsschrift, Rheinische Friedrich-Wilhelms-Universität, Bonn, 1989.

    Google Scholar 

  40. Wilbrink J. Erratic behavior of invariant circles in standard-like mappings. Physica D, 1987, 26(1–3), 358–368.

    Article  MATH  Google Scholar 

  41. Yamaguchi Y., Tanikawa K. A remark on the smoothness of critical KAM curves in the standard mapping. Progress Theor. Phys., 1999, 101(1), 1–24.

    Article  MathSciNet  Google Scholar 

1963-4

  1. Arnold V. I. Small denominators and problems of stability of motion in classical and celestial mechanics. Uspekhi Mat. Nauk, 1963, 18(6), 91–192 (in Russian). [The English translation: Russian Math. Surveys, 1963, 18(6), 85–191.]

    Google Scholar 

1963-5

  1. Arnold V. I. Small denominators and problems of stability of motion in classical and celestial mechanics. Uspekhi Mat. Nauk, 1963, 18(6), 91–192 (in Russian). [The English translation: Russian Math. Surveys, 1963, 18(6), 85–191.]

    Google Scholar 

1963-6

  1. Arnold V. I., Krylov A. L. Uniform distribution of points on a sphere and some ergodic properties of solutions of linear ordinary differential equations in a complex region. Dokl. Akad. Nauk SSSR, 1963, 148(1), 9–12 (in Russian). [The English translation: Sov. Math. Dokl., 1963, 4(1), 1–5.]

    MathSciNet  Google Scholar 

  2. Reprinted in: [1b] Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 47–53.

    Google Scholar 

1963-6 — V. I. Arnold

  1. Arnold V. I. Small denominators and problems of stability of motion in classical and celestial mechanics. Russian Math. Surveys, 1963, 18(6), 85–191.

    Article  Google Scholar 

  2. Arnold V. I. Conditions for the applicability and estimate of the error of an averaging method for systems which pass through the states of resonance in the course of their evolution. Sov. Math. Dokl., 1965, 6, 331–334. [The Russian original is reprinted in: Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 69–74.]

    Google Scholar 

  3. Arnold V. I. The asymptotic Hopf invariant and its applications. In: Proceedings of the All-Union School on Differential Equations with Infinitely Many Independent Variables and on Dynamical Systems with Infinitely Many Degrees of Freedom (Dilizhan, May 21–June 3, 1973). Yerevan: AS of Armenian SSR, 1974, 229–256 (in Russian). [The English translation: Selecta Math. Sov., 1986, 5(4), 327–345.] [The Russian original is reprinted and supplemented in: Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 215–236.]

    Google Scholar 

  4. Arnold V. I. Geometrical Methods in the Theory of Ordinary Differential Equations, 2nd edition. New York: Springer, 1988. (Grundlehren der Mathematischen Wissenschaften, 250.) [The Russian original 1978.]

    Google Scholar 

  5. Arnold V. I. Remarks on quasicrystallic symmetries. Physica D, 1988, 33(1–3), 21–25.

    Article  MathSciNet  Google Scholar 

  6. Arnold V. I. Remarks on quasicrystallic symmetry. Appendix B in: Klein F. Lectures on the Icosahedron and Solution of Equations of Fifth Degree. Moscow: Nauka, 1989, 291–300 (in Russian). [Reprinted in: Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 413–423.]

    Google Scholar 

  7. Arnold V. I. Dynamics of complexity of intersections. Bol. Soc. Brasil. Mat. (N. S.), 1990, 21(1), 1–10. [The Russian translation in: Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 489–499.]

    Article  MathSciNet  MATH  Google Scholar 

  8. Arnold V. I. Bounds for Milnor numbers of intersections in holomorphic dynamical systems. In: Topological Methods in Modern Mathematics. Proceedings of the symposium in honor of John Milnor's sixtieth birthday (Stony Brook, NY, 1991). Editors: L. R. Goldberg and A. V. Phillips. Houston, TX: Publish or Perish, 1993, 379–390.

    Google Scholar 

  9. Arnold V. I. Mathematical methods in classical physics. In: Trends and Perspectives in Applied Mathematics. Editors: F. John, J. E. Marsden, and L. Sirovich. New York: Springer, 1994, 1–20. (Appl. Math., 100.) [The Russian translation in: Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 553–575.]

    Google Scholar 

  10. Arnold V. I. Weak asymptotics for the numbers of solutions of Diophantine problems. Funct. Anal. Appl., 1999, 33(4), 292–293.

    Article  MathSciNet  Google Scholar 

  11. Arnold V. I. The statistic of the first digits of the deuce powers and repartition of the World. In: Soft and Rigid Mathematical Models. Moscow: Moscow Center for Continuous Mathematical Education Press, 2000, 22–26 (in Russian). [The German translation: Die Mathematik und die Neue Teilung der Welt. Hamburger Mosaik, 2002, No. 5, 65–68.]

    Google Scholar 

  12. Arnold V. I. Continued Fractions. Moscow: Moscow Center for Continuous Mathematical Education Press, 2001 (in Russian). (“Mathematical Education” Library, 14.)

    Google Scholar 

  13. Arnold V. I. Optimization in mean and phase transitions in controlled dynamical systems. Funct. Anal. Appl., 2002, 36(2), 83–92.

    Article  Google Scholar 

  14. Arnold V. I. The longest curves of given degree and the quasicrystallic Harnack theorem in pseudoperiodic topology. Funct. Anal. Appl., 2002, 36(3), 165–171.

    Article  MathSciNet  Google Scholar 

  15. Arnold V. I. On a variational problem connected with phase transitions of means in controllable dynamical systems. In: Nonlinear Problems in Mathematical Physics and Related Topics I. In honour of Professor O. A. Ladyzhenskaya. Editors: M. Sh. Birman, S. Hildebrandt, V. A. Solonnikov and N. N. Ural'tseva. Dordrecht: Kluwer Acad. Publ., 2002, 23–34. (Internat. Math. Ser., 1.)

    Google Scholar 

  16. Arnold V. I., Khesin B. A. Topological Methods in Hydrodynamics. New York: Springer, 1998. (Appl. Math. Sci., 125.)

    MATH  Google Scholar 

  17. Arnold V. I., Kozlov V. V., NeĬshtadt A. I. Mathematical Aspects of Classical and Celestial Mechanics, 2nd edition. Berlin: Springer, 1993. (Encyclopædia Math. Sci., 3; Dynamical Systems, III.) [The Russian original 1985.] [The second, revised and supplemented, Russian edition 2002.]

    Google Scholar 

  18. Gusein-Zade S. M. The number of critical points of a quasiperiodic potential. Funct. Anal. Appl., 1989, 23(2), 129–130.

    Article  MathSciNet  Google Scholar 

  19. Gusein-Zade S. M. On the topology of quasiperiodic functions. In: Pseudoperiodic Topology. Editors: V. Arnold, M. Kontsevich and A. Zorich. Providence, RI: Amer. Math. Soc., 1999, 1–7. (AMS Transl., Ser. 2, 197; Adv. Math. Sci., 46.)

    Google Scholar 

  20. Kontsevich M. L., Sukhov Yu. M. Statistics of Klein polyhedra and multidimensional continued fractions. In: Pseudoperiodic Topology. Editors: V. Arnold, M. Kontsevich and A. Zorich. Providence, RI: Amer. Math. Soc., 1999, 9–27. (AMS Transl., Ser. 2, 197; Adv. Math. Sci., 46.)

    Google Scholar 

  21. Novikov S. P. The analytic generalized Hopf invariant. Multivalued functionals. Russian Math. Surveys, 1984, 39(5), 113–124.

    Article  MATH  Google Scholar 

1963-6 — R. I. Grigorchuk

  1. Bewley T. Sur l'application des théorèmes ergodiques aux groupes libres de transformations: un contre-exemple. C. R. Acad. Sci. Paris, Sér. A–B, 1970, 270, A1533–A1534.

    MathSciNet  Google Scholar 

  2. Bufetov A. I. Operator ergodic theorems for actions of free semigroups and groups. Funct. Anal. Appl., 2000, 34(4), 239–251.

    Article  MathSciNet  MATH  Google Scholar 

  3. Grigorchuk R. I. An individual ergodic theorem for free group actions. In: XII School on Operator Theory in Function Spaces (Tambov, 1987). Part 1. Tambov: Tambov State Pedagogical Institute, 1987, 57 (in Russian).

    Google Scholar 

  4. Grigorchuk R. I. Ergodic theorems for the actions of a free group and a free semigroup. Math. Notes, 1999, 65(5), 654–657.

    Article  MathSciNet  MATH  Google Scholar 

  5. Krengel W. Ergodic Theorems. Berlin — New York: Walter de Gruyter, 1986.

    Google Scholar 

  6. Lindenstrauss E. Pointwise theorems for amenable groups. Electron. Res. Announc. Amer. Math. Soc., 1999, 5, 82–90 (electronic); Invent. Math., 2001, 146(2), 259–295.

    Article  MathSciNet  MATH  Google Scholar 

  7. Nevo A. On discrete groups and pointwise ergodic theory. In: Random Walks and Discrete Potential Theory (Cortona, 1997). Cambridge: Cambridge University Press, 1999, 279–305. (Sympos. Math., 39.)

    Google Scholar 

  8. Nevo A., Stein E. M. A generalization of Birkhoff's pointwise ergodic theorem. Acta Math., 1994, 173, 135–154.

    Article  MathSciNet  MATH  Google Scholar 

  9. Tempelman A. Ergodic Theorems for Group Actions. Informational and Thermodynamical Aspects. Dordrecht: Kluwer Acad. Publ., 1992. (Math. Appl., 78.) [Revised from the Russian original 1986.]

    Google Scholar 

1963-7

  1. Arnold V. I., Krylov A. L. Uniform distribution of points on a sphere and some ergodic properties of solutions of linear ordinary differential equations in a complex region. Dokl. Akad. Nauk SSSR, 1963, 148(1), 9–12 (in Russian). [The English translation: Sov. Math. Dokl., 1963, 4(1), 1–5.]

    MathSciNet  Google Scholar 

  2. Reprinted in: [1b] Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 47–53.

    Google Scholar 

1963-7 — R. I. Grigorchuk

  1. Grigorchuk R. I. On the uniform distribution of orbits of actions of hyperbolic groups, in preparation.

    Google Scholar 

1963-8

  1. Arnold V. I., Krylov A. L. Uniform distribution of points on a sphere and some ergodic properties of solutions of linear ordinary differential equations in a complex region. Dokl. Akad. Nauk SSSR, 1963, 148(1), 9–12 (in Russian). [The English translation: Sov. Math. Dokl., 1963, 4(1), 1–5.]

    MathSciNet  Google Scholar 

  2. Reprinted in: [1b] Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 47–53.

    Google Scholar 

1963-8 — R. I. Grigorchuk

  1. Guivarch Y. Equirepartition dans les espaces homogènes. In: Théorie ergodique (Actes Journées Ergodiques, Rennes, 1973/1974). Editors: J. P. Couze and M. S. Keane. New York: Springer, 1976, 131–142. (Lecture Notes in Math., 532.)

    Chapter  Google Scholar 

  2. Kazhdan D. A. The uniform distribution on the plane. Trudy Moskov. Mat. Obshch., 1965, 14, 299–305 (in Russian).

    Google Scholar 

  3. Vorobets Ya. B. On the uniform distribution of orbits of free group and semigroup actions on a plane. Proc. Steklov Inst. Math., 2000, 231, 59–89.

    MathSciNet  Google Scholar 

1963-9

  1. Arnold V. I., Krylov A. L. Uniform distribution of points on a sphere and some ergodic properties of solutions of linear ordinary differential equations in a complex region. Dokl. Akad. Nauk SSSR, 1963, 148(1), 9–12 (in Russian). [The English translation: Sov. Math. Dokl., 1963, 4(1), 1–5.]

    MathSciNet  Google Scholar 

  2. Reprinted in: [1b] Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 47–53.

    Google Scholar 

1963-9 — R. I. Grigorchuk

  1. Margulis G. A., Nevo A., Stein E. Analogs of Wiener's ergodic theorems for semisimple Lie groups, II. Duke Math. J., 2000, 103(2), 233–259.

    Article  MathSciNet  MATH  Google Scholar 

  2. Nevo A. Pointwise ergodic theorems for radial averages on simple Lie groups, I. Duke Math. J., 1994, 76(1), 113–140.

    Article  MathSciNet  MATH  Google Scholar 

  3. Nevo A. Pointwise ergodic theorems for radial averages on simple Lie groups, II. Duke Math. J., 1997, 86(2), 239–259.

    Article  MathSciNet  MATH  Google Scholar 

  4. Nevo A., Stein E. Analogs of Wiener's ergodic theorems for semisimple groups, II. Ann. Math., Ser. 2, 1997, 145(3), 565–595.

    Article  MathSciNet  MATH  Google Scholar 

  5. Nevo A., Thangarelu S. Pointwise ergodic theorems for radial averages on the Heisenberg group. Adv. Math., 1997, 127(2), 307–334.

    Article  MathSciNet  MATH  Google Scholar 

1963-10

  1. Arnold V. I., Krylov A. L. Uniform distribution of points on a sphere and some ergodic properties of solutions of linear ordinary differential equations in a complex region. Dokl. Akad. Nauk SSSR, 1963, 148(1), 9–12 (in Russian). [The English translation: Sov Math. Dokl., 1963, 4(1), 1–5.]

    MathSciNet  Google Scholar 

  2. Reprinted in: [1b] Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 47–53.

    Google Scholar 

1963-11

  1. Arnold V. I., Krylov A. L. Uniform distribution of points on a sphere and some ergodic properties of solutions of linear ordinary differential equations in a complex region. Dokl. Akad. Nauk SSSR, 1963, 148(1), 9–12 (in Russian). [The English translation: Sov. Math. Dokl., 1963, 4(1), 1–5.]

    MathSciNet  Google Scholar 

  2. Reprinted in: [1b] Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 47–53.

    Google Scholar 

1963-12

  1. Arnold V. I., Krylov A. L. Uniform distribution of points on a sphere and some ergodic properties of solutions of linear ordinary differential equations in a complex region. Dokl. Akad. Nauk SSSR, 1963, 148(1), 9–12 (in Russian). [The English translation: Sov. Math. Dokl., 1963, 4(1), 1–5.]

    MathSciNet  Google Scholar 

  2. Reprinted in: [1b] Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 47–53.

    Google Scholar 

1965-1

  1. Arnold V. I. Sur une propriété topologique des applications globalement canoniques de la mécanique classique. C. R. Acad. Sci. Paris, 1965, 261(19), 3719–3722.

    MathSciNet  Google Scholar 

  2. The Russian translation in: [1b] Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 81–86.

    Google Scholar 

1965-2

  1. Arnold V. I. Sur une propriété topologique des applications globalement canoniques de la mécanique classique. C. R. Acad. Sci. Paris, 1965, 261(19), 3719–3722.

    MathSciNet  Google Scholar 

  2. The Russian translation in: [1b] Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 81–86.

    Google Scholar 

1965-3

  1. Arnold V. I. Sur une propriété topologique des applications globalement canoniques de la mécanique classique. C. R. Acad. Sci. Paris, 1965, 261(19), 3719–3722.

    MathSciNet  Google Scholar 

  2. The Russian translation in: [1b] Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 81–86.

    Google Scholar 

1966-1

  1. Arnold V. I. The stability problem and ergodic properties of classical dynamical systems. In: Proceedings of the International Congress of Mathematicians (Moscow, 1966). Moscow: Mir, 1968, 387–392 (in Russian). [The English translation: AMS Transl., Ser. 2, 1968, 70, 5–11.]

    Google Scholar 

  2. The original is reprinted in: [1b] Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 95–101.

    Google Scholar 

1966-2

  1. Arnold V. I. The stability problem and ergodic properties of classical dynamical systems. In: Proceedings of the International Congress of Mathematicians (Moscow, 1966). Moscow: Mir, 1968, 387–392 (in Russian). [The English translation: AMS Transl., Ser. 2, 1968, 70, 5–11.]

    Google Scholar 

  2. The original is reprinted in: [1b] Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 95–101.

    Google Scholar 

1966-2 — M. B. Sevryuk

  1. Bambusi D. A Nekhoroshev-type theorem for the Pauli-Fierz model of classical electrodynamics. Ann. Institut Henri Poincaré, Physique théorique, 1994, 60(3), 339–371.

    MathSciNet  MATH  Google Scholar 

  2. Bambusi D. Exponential stability of breathers in Hamiltonian networks of weakly coupled oscillators. Nonlinearity, 1996, 9(2), 433–457.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bambusi D. Long time stability of some small amplitude solutions in nonlinear Schrödinger equations. Commun. Math. Phys., 1997, 189(1), 205–226.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bambusi D. Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equations. Math. Z., 1999, 230(2), 345–387.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bambusi D. On long time stability in Hamiltonian perturbations of non-resonant linear PDEs. Nonlinearity, 1999, 12(4), 823–850.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bambusi D., Giorgilli A. Exponential stability of states close to resonance in infinite-dimensional Hamiltonian systems. J. Stat. Phys., 1993, 71(3–4), 569–606.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bambusi D., Nekhoroshev N. N. A property of exponential stability in nonlinear wave equations near the fundamental linear mode. Physica D, 1998, 122(1–4), 73–104.

    Article  MathSciNet  MATH  Google Scholar 

  8. Benettin G., Fassò F., Guzzo M. Nekhoroshev-stability of L4 and L5 in the spatial restricted three-body problem. Reg. Chaot. Dynamics, 1998, 3(3), 56–72; erratum: 1998, 3(4), 48.

    Article  MATH  Google Scholar 

  9. Benettin G., Fröhlich J., Giorgilli A. A Nekhoroshev-type theorem for Hamiltonian systems with infinitely many degrees of freedom. Commun. Math. Phys., 1988, 119(1), 95–108.

    Article  MATH  Google Scholar 

  10. Benettin G., Galgani L., Giorgilli A. A proof of Nekhoroshev's theorem for the stability times in nearly integrable Hamiltonian systems. Celest. Mech., 1985, 37(1), 1–25.

    Article  MathSciNet  MATH  Google Scholar 

  11. Benettin G., Gallavotti G. Stability of motions near resonances in quasi-integrable Hamiltonian systems. J. Stat. Phys., 1986, 44(3–4), 293–338.

    Article  MathSciNet  MATH  Google Scholar 

  12. Celletti A., Chierchia L. On the stability of realistic three-body problems. Commun. Math. Phys., 1997, 186(2), 413–449.

    Article  MathSciNet  MATH  Google Scholar 

  13. Celletti A., Ferrara L. An application of the Nekhoroshev theorem to the restricted three-body problem. Celest. Mech. Dynam. Astronom., 1996, 64(3), 261–272.

    Article  MathSciNet  MATH  Google Scholar 

  14. Chirikov B. V. A universal instability of many-dimensional oscillator systems. Phys. Rep., 1979, 52(5), 263–379.

    Article  MathSciNet  Google Scholar 

  15. Delshams A., Gutiérrez P. Effective stability for nearly integrable Hamiltonian systems. In: Proceedings of Intern. Conf. on Differential Equations (\(Equa\tfrac{{\partial i}} {{\partial t}}ff{\text{ 91}}\)) (Barcelona, 1991), Vol. 1. Editors: C. Perelló, C. Simó and J. Solà-Morales. Singapore: World Scientific, 1993, 415–420.

    Google Scholar 

  16. Delshams A., Gutiérrez P. Nekhoroshev and KAM theorems revisited via a unified approach. In: Hamiltonian Mechanics: Integrability and Chaotic Behavior (Toruń, 1993). Editor: J. Seimenis. New York: Plenum Press, 1994, 299–306. (NATO Adv. Sci. Inst. Ser. B Phys., 331.)

    Google Scholar 

  17. Delshams A., Gutiérrez P. Effective stability and KAM theory. J. Differ. Equations, 1996, 128(2), 415–490.

    Article  MATH  Google Scholar 

  18. Fassò F., Guzzo M., Benettin G. Nekhoroshev-stability of elliptic equilibria of Hamiltonian systems. Commun. Math. Phys., 1998, 197(2), 347–360.

    Article  MATH  Google Scholar 

  19. Gabern F., Jorba À. A restricted four-body model for the dynamics near the Lagrangian points of the Sun-Jupiter system. Discrete Contin. Dynam. Systems, Ser. B, 2001, 1(2), 143–182.

    Article  MathSciNet  MATH  Google Scholar 

  20. Giorgilli A. Energy equipartition and Nekhoroshev-type estimates for large systems. In: Hamiltonian Dynamical Systems: History, Theory, and Applications (Cincinnati, 1992). Editors: H. S. Dumas, K. R. Meyer and D. S. Schmidt. New York: Springer, 1995, 147–161. (The IMA Volumes in Math. and Appl., 63.)

    Google Scholar 

  21. Giorgilli A. On the problem of stability for near to integrable Hamiltonian systems. In: Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998). Doc. Math., 1998, Extra Vol. III, 143–152 (electronic).

    Google Scholar 

  22. Giorgilli A., Delshams A., Fontich E., Galgani L., Simó C. Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem. J. Differ. Equations, 1989, 77(1), 167–198.

    Article  MATH  Google Scholar 

  23. Giorgilli A., Galgani L. Rigorous estimates for the series expansions of Hamiltonian perturbation theory. Celest. Mech., 1985, 37(2), 95–112.

    Article  MathSciNet  Google Scholar 

  24. Giorgilli A., Morbidelli A. Invariant KAM tori and global stability for Hamiltonian systems. Z. Angew. Math. Phys., 1997, 48(1), 102–134.

    Article  MathSciNet  MATH  Google Scholar 

  25. Giorgilli A., Skokos CH. On the stability of the Trojan asteroids. Astron. Astrophys., 1997, 317, 254–261.

    Google Scholar 

  26. Guzzo M. Nekhoroshev stability of quasi-integrable degenerate Hamiltonian systems. Reg. Chaot. Dynamics, 1999, 4(2), 78–102.

    Article  MathSciNet  MATH  Google Scholar 

  27. Guzzo M., Benettin G. A spectral formulation of the Nekhoroshev theorem and its relevance for numerical and experimental data analysis. Discrete Contin. Dynam. Systems, Ser. B, 2001, 1(1), 1–28.

    Article  MathSciNet  MATH  Google Scholar 

  28. Guzzo M., Fassò F., Benettin G. On the stability of elliptic equilibria. Math. Phys. Electron. J., 1998, 4, Paper 1, 16 pp. (electronic).

    Google Scholar 

  29. Guzzo M., Lega E., Froeschlé C. On the numerical detection of the effective stability of chaotic motions in quasi-integrable systems. Physica D, 2002, 163(1–2), 1–25.

    Article  MathSciNet  MATH  Google Scholar 

  30. Guzzo M., Morbidelli A. Construction of a Nekhoroshev like result for the asteroid belt dynamical system. Celest. Mech. Dynam. Astronom., 1996/97, 66(3), 255–292.

    Article  MathSciNet  Google Scholar 

  31. Il'yashenko Yu. S. A steepness test for analytic functions. Russian Math. Surveys, 1986, 41(1), 229–230.

    Article  MathSciNet  MATH  Google Scholar 

  32. Jorba À., Simó C. Effective stability for periodically perturbed Hamiltonian systems. In: Hamiltonian Mechanics: Integrability and Chaotic Behavior (Toruń, 1993). Editor: J. Seimenis. New York: Plenum Press, 1994, 245–252. (NATO Adv. Sci. Inst. Ser. B Phys., 331.)

    Google Scholar 

  33. Jorba À., Villanueva J. On the normal behaviour of partially elliptic lower-dimensional tori of Hamiltonian systems. Nonlinearity, 1997, 10(4), 783–822.

    Article  MathSciNet  MATH  Google Scholar 

  34. Jorba À., Villanueva J. Numerical computation of normal forms around some periodic orbits of the restricted three-body problem. Physica D, 1998, 114(3–4), 197–229.

    Article  MathSciNet  MATH  Google Scholar 

  35. Jorba À., Villanueva J. Effective stability around periodic orbits of the spatial RTBP. In: Hamiltonian Systems with Three or More Degrees of Freedom (S'garó, 1995). Editor: C. Simó. Dordrecht: Kluwer Acad. Publ., 1999, 628–632. (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 533.)

    Google Scholar 

  36. Landis E. E. Uniform steepness indices. Uspekhi Mat. Nauk, 1986, 41(4), 179 (in Russian).

    MathSciNet  Google Scholar 

  37. Lochak P. Canonical perturbation theory via simultaneous approximation. Russian Math. Surveys, 1992, 47(6), 57–133.

    Article  MathSciNet  Google Scholar 

  38. Lochak P. Hamiltonian perturbation theory: periodic orbits, resonances and intermittency. Nonlinearity, 1993, 6(6), 885–904.

    Article  MathSciNet  MATH  Google Scholar 

  39. Lochak P. Stability of Hamiltonian systems over exponentially long times: the near-linear case. In: Hamiltonian Dynamical Systems: History, Theory, and Applications (Cincinnati, 1992). Editors: H. S. Dumas, K. R. Meyer and D. S. Schmidt. New York: Springer, 1995, 221–229. (The IMA Volumes in Math. and Appl., 63.)

    Google Scholar 

  40. Lochak P., NeĬshtadt A. I., Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian. Chaos, 1992, 2(4), 495–499.

    Article  MathSciNet  MATH  Google Scholar 

  41. Lochak P., NeĬshtadt A. I., Niederman L. Stability of nearly integrable convex Hamiltonian systems over exponentially long times. In: Seminar on Dynamical Systems (St. Petersburg, 1991). Editors: S. B. Kuksin, V. F. Lazutkin and J. Pöschel. Basel: Birkhäuser, 1994, 15–34.

    Google Scholar 

  42. Morbidelli A. Bounds on diffusion in phase space: connection between Nekhoroshev and KAM theorems and superexponential stability of invariant tori. In: Hamiltonian Systems with Three or More Degrees of Freedom (S'Agaró, 1995). Editor: C. Simó. Dordrecht: Kluwer Acad. Publ., 1999, 514–517. (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 533.)

    Google Scholar 

  43. Morbidelli A., Giorgilli A. Quantitative perturbation theory by successive elimination of harmonics. Celest. Mech. Dynam. Astronom. 1993, 55(2), 131–159.

    Article  MathSciNet  MATH  Google Scholar 

  44. Morbidelli A., Giorgilli A. On a connection between KAM and Nekhoroshev’ theorems. Physica D, 1995, 86(3), 514–516.

    Article  MathSciNet  MATH  Google Scholar 

  45. Morbidelli A., Giorgilli A. Superexponential stability of KAM tori. J. Stat. Phys., 1995, 78(5–6), 1607–1617.

    Article  MathSciNet  MATH  Google Scholar 

  46. Morbidelli A., Guzzo M. The Nekhoroshev theorem and the asteroid belt dynamical system. Celest. Mech. Dynam. Astronom., 1996/97, 65(1–2), 107–136.

    MathSciNet  Google Scholar 

  47. Nekhoroshev N. N. On the behavior of Hamiltonian systems close to integrable ones. Funct. Anal. Appl., 1971, 5(4), 338–339.

    Article  MATH  Google Scholar 

  48. Nekhoroshev N. N. Stable lower estimates for smooth mappings and the gradients of smooth functions. Math. USSR, Sb., 1973, 19(3), 425–467.

    Article  Google Scholar 

  49. Nekhoroshev N. N. The method of successive canonical changes of variables. An addendum to: Moser J. Lectures on Hamiltonian Systems. Moscow: Mir, 1973, 150–164 (in Russian).

    Google Scholar 

  50. Nekhoroshev N. N. An exponential estimate of the stability time for Hamiltonian systems close to integrable ones, I. Russian Math. Surveys, 1977, 32(6), 1–65.

    Article  MATH  Google Scholar 

  51. Nekhoroshev N. N. An exponential estimate of the stability time for Hamiltonian systems close to integrable ones, II. Trudy Semin. Petrovskogo, 1979, 5, 5–50 (in Russian). [The English translation in: Topics in Modern Mathematics. Editor: O. A. Oleĭnik. New York: Consultant Bureau, 1985, 1–58. (Petrovskiĭ Semin., 5.)]

    MathSciNet  MATH  Google Scholar 

  52. Nekhoroshev N. N. Exponential stability of the approximate fundamental mode of a nonlinear wave equation. Funct. Anal. Appl., 1999, 33(1), 69–71.

    Article  MathSciNet  MATH  Google Scholar 

  53. Nekhoroshev N. N. Strong stability of the approximate fundamental mode of a nonlinear string equation. Trudy Moskov. Mat. Obshch., 2002, 63, 166–236 (in Russian, for the English translation see Trans. Moscow Math. Soc.).

    MathSciNet  Google Scholar 

  54. Niederman L. Stability over exponentially long times in the planetary problem. In: From Newton to Chaos: Modern Techniques for Understanding and Coping with Chaos in N-body Dynamical Systems (Cortina d'Ampezzo, 1993). Editors: A. E. Roy and B. A. Steves. New York: Plenum Press, 1995, 109–118. (NATO Adv. Sci. Inst. Ser. B Phys., 336.)

    Google Scholar 

  55. Niederman L. Stability over exponentially long times in the planetary problem. Nonlinearity, 1996, 9(6), 1703–1751.

    Article  MathSciNet  MATH  Google Scholar 

  56. Niederman L. Nonlinear stability around an elliptic equilibrium point in a Hamiltonian system. Nonlinearity, 1998, 11(6), 1465–1479.

    Article  MathSciNet  MATH  Google Scholar 

  57. Perry A. D., Wiggins S. KAM tori are very sticky: rigorous lower bounds on the time to move away from an invariant Lagrangian torus with linear flow. Physica D, 1994, 71(1–2), 102–121.

    Article  MathSciNet  MATH  Google Scholar 

  58. Pöschel J. Nekhoroshev estimates for quasi-convex Hamiltonian systems. Math. Z., 1993, 213(2), 187–216.

    Article  MathSciNet  MATH  Google Scholar 

  59. Pöschel J. On Nekhoroshev estimates for a nonlinear Schrödinger equation and a theorem by Bambusi. Nonlinearity, 1999, 12(6), 1587–1600.

    Article  MathSciNet  MATH  Google Scholar 

  60. Pöschel J. On Nekhoroshev's estimate at an elliptic equilibrium. Internal. Math. Res. Notices, 1999, 4, 203–215.

    Article  Google Scholar 

  61. Rosikov Yu. V. The normalization of a perturbed system of Hamiltonian equations in the resonant case. Preprint of the Moscow Space Research Institute, Russia Academy of Sciences, 1994, № 1892, 37 pp. (in Russian).

    Google Scholar 

  62. Rosikov Yu. V. A refinement of the exponential estimate on the stability time in nearly integrable Hamiltonian systems. Preprint of the Moscow Space Research Institute, Russia Academy of Sciences, 1994, № 1893, 34 pp. (in Russian).

    Google Scholar 

  63. Steichen D., Giorgilli A. Long time stability for the main problem of artificial satellites. Celest. Mech. Dynam. Astronom. 1997/98, 69(3), 317–330.

    Article  MathSciNet  Google Scholar 

  64. Vecheslavov V. V., Chirikov B. V. What is the rate of the Arnold diffusion equal to? Preprint of the Novosibirsk Institute for Nuclear Physics, the USSR Academy of Sciences, 1989, № 72 (in Russian).

    Google Scholar 

1966-3

  1. Arnold V. I. The stability problem and ergodic properties of classical dynamical systems. In: Proceedings of the International Congress of Mathematicians (Moscow, 1966). Moscow: Mir, 1968, 387–392 (in Russian). [The English translation: AMS Transl., Ser. 2, 1968, 70, 5–11.]

    Google Scholar 

  2. The original is reprinted in: [1b] Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 95–101.

    Google Scholar 

1966-4

  1. Arnold V. I. The stability problem and ergodic properties of classical dynamical systems. In: Proceedings of the International Congress of Mathematicians (Moscow, 1966). Moscow: Mir, 1968, 387–392 (in Russian). [The English translation: AMS Transl., Ser. 2, 1968, 70, 5–11.]

    Google Scholar 

  2. The original is reprinted in: [1b] Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 95–101.

    Google Scholar 

  3. Arnold V. I. Sur une propriété topologique des applications globalement canoniques de la mécanique classique. C. R. Acad. Sci. Paris, 1965, 261(19), 3719–3722.

    MathSciNet  Google Scholar 

  4. The Russian translation in: [2b] Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 81–86.

    Google Scholar 

1966-5

  1. Arnold V. I. The stability problem and ergodic properties of classical dynamical systems. In: Proceedings of the International Congress of Mathematicians (Moscow, 1966). Moscow: Mir, 1968, 387–392 (in Russian). [The English translation: AMS Transl., Ser. 2, 1968, 70, 5–11.]

    Google Scholar 

  2. The original is reprinted in: [1b] Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 95–101.

    Google Scholar 

  3. Arnold V. I. Sur une propriété topologique des applications globalement canoniques de la mécanique classique. C. R. Acad. Sci. Paris, 1965, 261(19), 3719–3722.

    MathSciNet  Google Scholar 

  4. The Russian translation in: [2b] Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 81–86.

    Google Scholar 

1966-6

  1. Arnold V. I. The stability problem and ergodic properties of classical dynamical systems. In: Proceedings of the International Congress of Mathematicians (Moscow, 1966). Moscow: Mir, 1968, 387–392 (in Russian). [The English translation: AMS Transl., Ser. 2, 1968, 70, 5–11.]

    Google Scholar 

  2. The original is reprinted in: [1b] Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 95–101.

    Google Scholar 

1969-1 — V. D. Sedykh

  1. Aleksandrov V. A. An example of a flexible polyhedron with nonconstant volume in the spherical space. Beiträge zur Algebra und Geometrie, 1997, 38(1), 11–18.

    Google Scholar 

  2. Connelly R., Sabitov I., Walz A. The bellows conjecture. Beiträge zur Algebra und Geometrie, 1997, 38(1), 1–10.

    MathSciNet  MATH  Google Scholar 

  3. Sabitov I. Kh. On the problem of the invariance of the volume of a deformable polyhedron. Russian Math. Surveys, 1995, 50(2), 451–452.

    Article  MathSciNet  MATH  Google Scholar 

1970-1 — M. B. Sevryuk

  1. Arnold V. I. On matrices depending on parameters. Russian Math. Surveys, 1971, 26(2), 29–43. [The Russian original is reprinted in: Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 155–173.]

    Article  Google Scholar 

  2. Arnold V. I. Lectures on bifurcations and versal families. Russian Math. Surveys, 1972, 27(5), 54–123.

    Article  Google Scholar 

  3. Arnold V. I. Geometrical Methods in the Theory of Ordinary Differential Equations, 2nd edition. New York: Springer, 1988, § 30. (Grundlehren der Mathematischen Wissenschaften, 250.) [The Russian original 1978.]

    Google Scholar 

  4. Braun H., Koecher M. Jordan-Algebren. Berlin: Springer, 1966.

    MATH  Google Scholar 

  5. Burgoyne N., Cushman R. Conjugacy classes in linear groups. J. Algebra, 1977, 44(2), 339–362.

    Article  MathSciNet  MATH  Google Scholar 

  6. Djoković D.Ž., Patera J., Winternitz P., Zassenhaus H. Normal forms of elements of classical real and complex Lie and Jordan algebras. J. Math. Phys., 1983, 24(6), 1363–1374.

    Article  MathSciNet  MATH  Google Scholar 

  7. Edelman A., Elmroth E., Kågström B. A geometric approach to perturbation theory of matrices and matrix pencils. Part I: versal deformations. SIAM J. Matrix Anal. Appl., 1997, 18(3), 653–692.

    Article  MathSciNet  MATH  Google Scholar 

  8. Edelman A., Elmroth E., Kågström B. A geometric approach to perturbation theory of matrices and matrix pencils. Part II: a stratification-enhanced staircase algorithm. SIAM J. Matrix Anal. Appl., 1999, 20(3), 667–699.

    Article  MathSciNet  MATH  Google Scholar 

  9. Ferrer J., García M. I., Puerta F. Brunowsky local form of a holomorphic family of pairs of matrices. Linear Algebra Appl., 1997, 253, 175–198.

    Article  MathSciNet  MATH  Google Scholar 

  10. Galin D. M. On real matrices depending on parameters. Uspekhi Mat. Nauk, 1972, 27(1), 241–242 (in Russian).

    MathSciNet  MATH  Google Scholar 

  11. Galin D. M. Versal deformations of linear Hamiltonian systems. Trudy Semin. Petrovskogo, 1975, 1, 63–74 (in Russian). [The English translation: AMS Transl., Ser. 2, 1982, 118, 1–12.]

    MathSciNet  Google Scholar 

  12. García-Planas M. I. Versal deformations of pairs of matrices. Linear Algebra Appl., 1992, 170, 194–200.

    Google Scholar 

  13. Hoveijn I. Versal deformations and normal forms for reversible and Hamiltonian linear systems. J. Differ. Equations, 1996, 126(2), 408–442.

    Article  MathSciNet  MATH  Google Scholar 

  14. Jacobson N. Structure and representations of Jordan algebras. Providence, RI: Amer. Math. Soc., 1968. (Amer. Math. Soc. Colloquium Publ., 39.)

    MATH  Google Scholar 

  15. Koçak H. Normal forms and versal deformations of linear Hamiltonian systems. J. Differ. Equations, 1984, 51(3), 359–407.

    Article  MATH  Google Scholar 

  16. Melbourne I. Versal unfoldings of equivariant linear Hamiltonian vector fields. Math. Proc. Cambridge Phil. Soc., 1993, 114(3), 559–573.

    Article  MathSciNet  MATH  Google Scholar 

  17. Patera J., Rousseau C. Complex orthogonal and symplectic matrices depending on parameters. J. Math. Phys., 1982, 23(5), 705–714.

    Article  MathSciNet  MATH  Google Scholar 

  18. Patera J., Rousseau C. Versal deformations of elements of classical Jordan algebras. J. Math. Phys., 1983, 24(6), 1375–1380.

    Article  MathSciNet  MATH  Google Scholar 

  19. Patera J., Rousseau C., Schlomiuk D. Dimensions of orbits and strata in complex and real classical Lie algebras. J. Math. Phys., 1982, 23(4), 490–494.

    Article  MathSciNet  MATH  Google Scholar 

  20. Patera J., Rousseau C., Schlomiuk D. Versal deformations of elements of real classical Lie algebras. J. Phys. A: Math. Gen., 1982, 15(4), 1063–1086.

    Article  MathSciNet  MATH  Google Scholar 

  21. Sevryuk M. B. Linear reversible systems and their versal deformations. J. Sov. Math., 1992, 60(5), 1663–1680. [The Russian original: Trudy Seminara im. I. G. Petrovskogo, 1991, 15, 33–54.]

    Article  MathSciNet  Google Scholar 

  22. Shih C.-W. Normal forms and versal deformations of linear involutive dynamical systems. Chinese J. Math., 1993, 21(4), 333–347.

    MathSciNet  MATH  Google Scholar 

  23. Wall G. E. On the conjugacy classes in the unitary, symplectic and orthogonal groups. J. Austral. Math. Soc., 1963, 3(1), 1–62.

    Article  MathSciNet  MATH  Google Scholar 

  24. Wan Y.-H. Versal deformations of infinitesimally symplectic transformations with antisymplectic involutions. In: Singularity Theory and its Applications, Part II. Editors: M. Roberts and I. Stewart. Berlin: Springer, 1991, 301–320. (Lecture Notes in Math., 1463.)

    Chapter  Google Scholar 

1970-2

  1. Arnold V. I. Algebraic unsolvability of the problem of Lyapunov stability and the problem of topological classification of singular points of an analytic system of differential equations. Funct. Anal. Appl., 1970, 4(3), 173–180.

    Article  Google Scholar 

  2. Arnold V. I. Algebraic unsolvability of the problem of stability and the problem of topological classification of singular points of analytic systems of differential equations. Uspekhi Mat. Nauk, 1970, 25(2), 265–266 (in Russian).

    Google Scholar 

  3. Arnold V. I. Local problems of analysis. Moscow Univ. Math. Bull., 1970, 25(2), 77–80.

    Google Scholar 

1970-3 — V. I. Arnold

  1. Arnold V. I. One-dimensional cohomologies of Lie algebras of nondivergent vector fields and rotation numbers of dynamic systems. Funct. Anal. Appl., 1969, 3(4), 319–321. [The Russian original is reprinted in: Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 147–150.]

    Article  Google Scholar 

1970-5 — M. B. Sevryuk

  1. arnold V. I. Geometrical Methods in the Theory of Ordinary Differential Equations, 2nd edition. New York: Springer, 1988, § 18. (Grundlehren der Mathematischen Wissenschaften, 250.) [The Russian original 1978.]

    Google Scholar 

  2. Bakhtin V. I. Averaging in multifrequency systems. Funct. Anal. Appl., 1986, 20(2), 83–88.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bakhtin V. I. Diophantine approximations on images of mappings. Dokl. Akad. Nauk Beloruss. SSR, 1991, 35(5), 398–400 (in Russian).

    MathSciNet  MATH  Google Scholar 

  4. Bernik V. I. Diophantine approximations on differentiable manifolds. Dokl. Akad. Nauk Beloruss. SSR, 1989, 33(8), 681–683 (in Russian).

    MathSciNet  MATH  Google Scholar 

  5. Bernik V. I., Mel'nichuk Yu. V. Diophantine Approximations and Hausdorff Dimension. Minsk: Nauka i Tekhnika, 1988 (in Russian).

    Google Scholar 

  6. Broer H. W., Huitema G. B., Sevryuk M. B. Quasi-Periodic Motions in Families of Dynamical Systems: Order amidst Chaos. Berlin: Springer, 1996. (Lecture Notes in Math., 1645.)

    Google Scholar 

  7. Dodson M. M., Pöschel J., Rynne B. P., Vickers J. A. G. The Hausdorff dimension of small divisors for lower-dimensional KAM-tori. Proc. Roy. Soc. London, Ser. A, 1992, 439(1906), 359–371.

    Article  MathSciNet  MATH  Google Scholar 

  8. Dodson M. M., Vickers J. A. G. Exceptional sets in Kolmogorov-Arnold-Moser theory. J. Phys. A: Math. Gen., 1986, 19(3), 349–374.

    Article  MathSciNet  MATH  Google Scholar 

  9. Parasyuk Ī. O. Persistence of quasi-periodic motions in reversible multifrequency systems. Dokl. Akad. Nauk Ukrain. SSR, Ser. A, 1982, 9, 19–22 (in Russian).

    MathSciNet  Google Scholar 

  10. Postnikov A. G., FreĬman G. A. Inter-college symposium on the number theory (Vladimir, June of 1968). Uspekhi Mat. Nauk, 1969, 24(1), 235–237 (in Russian).

    Google Scholar 

  11. Pyartli A. S. Diophantine approximations on submanifolds of the Euclidean space. Funct. Anal. Appl., 1969, 3(4), 303–306.

    Article  MATH  Google Scholar 

  12. Schmidt W. M. Diophantine Approximation. Berlin: Springer, 1980. (Lecture Notes in Math., 785.)

    MATH  Google Scholar 

  13. Sevryuk M. B. The iteration-approximation decoupling in the reversible KAM theory. Chaos, 1995, 5(3), 552–565.

    Article  MathSciNet  MATH  Google Scholar 

  14. Sprindžuk V. G. Metric Theory of Diophantine Approximations. New York: John Wiley, 1979. [The Russian original 1977.]

    Google Scholar 

  15. Sprindžuk V. G. Achievements and problems in the theory of Diophantine approximations. Russian Math. Surveys, 1980, 35(4), 1–80.

    Article  Google Scholar 

  16. Xia Zh. Existence of invariant tori in volume-preserving diffeomorphisms. Ergod. Theory Dynam. Systems, 1992, 12(3), 621–631.

    MATH  Google Scholar 

1970-6 — A. M. Lukatskiĭ

  1. Arnold V. I. Sur la géométrie différentielle de groupes de Lie de dimension infinie and ses applications à l'hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble), 1966, 16(1), 319–361.

    MathSciNet  Google Scholar 

  2. LukatskiĬ A. M. Curvature of groups of diffeomorphisms preserving the measure of the 2-sphere. Funct. Anal. Appl., 1979, 13(3), 174–177.

    Google Scholar 

  3. Misiołek G. Stability of flows of ideal fluids and the geometry of the group of diffeomorphisms. Indiana Univ. Math. J., 1993, 42(1), 215–235.

    Article  MathSciNet  MATH  Google Scholar 

  4. Misiołek G. Conjugate points in Dμ(\(\mathbb{T}^2 \)). Proc. Amer. Math. Soc., 1996, 124(3), 977–982.

    Article  MathSciNet  MATH  Google Scholar 

1970-7 — A. M. Lukatskiĭ

  1. Arakelyan T. A., Savvidy G. K. Geometry of a group of area-preserving diffeomorphisms. Phys. Lett. B, 1989, 223(1), 41–46.

    Article  MathSciNet  Google Scholar 

  2. Kambe T., Nakamura F., Hattori Y. Kinematical instability and line-stretching in relation to the geodesics of fluid motion. In: Topological Aspects of the Dynamics of Fluids and Plasmas. Editors: H. K. Moffatt, G. M. Zaslavsky, P. Comte and M. Tabor. Dordrecht: Kluwer Acad. Publ., 1992, 493–504. (NATO Adv. Sci. Inst. Ser. E Appl. Sci., 218.)

    Google Scholar 

  3. LukatskiĬ A. M. Curvature of groups of diffeomorphisms preserving the measure of the 2-sphere. Funct. Anal. Appl., 1979, 13(3), 174–177.

    Google Scholar 

  4. LukatskiĬ A. M. Curvature of the group of measure-preserving diffeomorphisms of the n-dimensional torus. Sib. Math. J., 1984, 25(6), 893–903.

    Article  Google Scholar 

  5. LukatskiĬ A. M. Structure of the curvature tensor of the group of measure-preserving diffeomorphisms of a compact two-dimensional manifold. Sib. Math. J., 1988, 29(6), 947–951.

    Article  Google Scholar 

  6. Yoshida K. Riemannian curvature on the group of area-preserving diffeomorphisms (motions of fluid) of 2-sphere. Physica D, 1997, 100(3–4), 377–389.

    Article  MathSciNet  MATH  Google Scholar 

1970-8

  1. Faddeev L. D. On the theory of stability for stationary plane-parallel currents of an ideal fluid. Zap. Nauch. Semin. Leningrad. Otd. Mat. Inst. Steklova, 1971, 21, 164–172 (in Russian). (Boundary Problems of Mathematical Physics and Related Questions of the Function Theory, 5.)

    MathSciNet  MATH  Google Scholar 

1970-9 — A. M. Lukatskiĭ

  1. Arnold V. I., Khesin B. A. Topological Methods in Hydrodynamics. New York: Springer, 1998. (Appl. Math. Sci., 125.)

    MATH  Google Scholar 

1970-10 — V. I. Arnold, B. A. Khesin

  1. Nikishin N. A. Fixed points of diffeomorphisms of two-dimensional spheres preserving oriented area. Funct. Anal. Appl., 1974, 8(1), 77–79.

    Article  MATH  Google Scholar 

  2. Simon C. P. A bound for the fixed-point index of an area-preserving map with applications to mechanics. Invent. Math., 1974, 26(3), 187–200.

    Article  MathSciNet  MATH  Google Scholar 

1970-13 — V. A. Vassiliev

  1. Arnold V. I. On some topological invariants of algebraic functions. Trans. Moscow Math. Soc., 1970, 21, 30–52.

    Google Scholar 

  2. Kharlamov V. M. Rigid isotopy classification of real plane curves of degree 5. Funct. Anal. Appl., 1981, 15(1), 73–74.

    Article  MathSciNet  MATH  Google Scholar 

  3. Looijenga E. J. N. Cohomology of M3 and M 31 . In: Mapping Class Groups and Moduli Spaces of Riemann Surfaces (Göttingen/Seattle, WA, 1991). Editors: C.-F. Bödigheimer and R. M. Hain. Providence, RI: Amer. Math. Soc., 1993, 205–228. (Contemp. Math., 150.)

    Google Scholar 

  4. Vassiliev V. A. How to calculate homology groups of spaces of nonsingular algebraic projective hypersurfaces. Proc. Steklov Inst. Math., 1999, 225, 121–140.

    Google Scholar 

1970-14 — M. L. Kontsevich

  1. Hatcher A., McCullough D. Finiteness of classifying spaces of relative diffeomorphism groups of 3-manifolds. Geometry & Topology, 1997, 1, 91–109 (electronic). [Internet: http:/www.arXiv.org/abs/math.GT/9712260]

    Article  MathSciNet  MATH  Google Scholar 

  2. Hatcher A. Spaces of knots. [Internet: http:/www.arXiv.org/abs/math.GT/9909095]

    Google Scholar 

1970-14 — V. A. Vassiliev

  1. Goldsmith D. Motions of links in the 3-sphere. Bull. Amer. Math. Soc., 1974, 80, 62–66; Math. Scand., 1982, 50, 167–205.

    Article  MathSciNet  MATH  Google Scholar 

  2. Hatcher A. Topological moduli spaces of knots. [Internet: http://www.math.cornell.edu/~hatcher/Papers/]

    Google Scholar 

  3. Tourtchine V. Sur l'homologie des espaces des nœuds non-compacts. [Internet: http:/www.arXiv.org/abs/math.QA/0010017]

    Google Scholar 

  4. Vassiliev V. A. Cohomology of knot spaces. In: Theory of Singularities and its Applications. Editor: V. I. Arnold. Providence, RI: Amer. Math. Soc., 1990, 23–69. (Adv. Sov. Math., 1.)

    Google Scholar 

  5. Vassiliev V. A. Topology of two-connected graphs and homology of spaces of knots. In: Differential and Symplectic Topology of Knots and Curves. Editor: S. Tabachnikov. Providence, RI: Amer. Math. Soc., 1999, 253–286. (AMS Transl., Ser. 2, 190; Adv. Math. Sci., 42.)

    Google Scholar 

  6. Vassiliev V. A. Combinartorial formulae for cohomology of knot spaces. Moscow Math. J., 2001, 1(1), 91–123.

    MathSciNet  MATH  Google Scholar 

1970-15 — V. V. Goryunov

  1. Goryunov V. V. Functions on space curves. J. London Math. Soc., Ser. 2, 2000, 61(3), 807–822.

    Article  MathSciNet  MATH  Google Scholar 

  2. Goryunov V. V. Simple functions on space curves. Funct. Anal. Appl., 2000, 34(2), 129–132.

    Article  MathSciNet  MATH  Google Scholar 

  3. Goryunov V. V., Lando S. K. On enumeration of meromorphic functions on the line. In: The Arnoldfest. Proceedings of a conference in honour of V. I. Arnold for his sixtieth birthday (Toronto, 1997). Editors: E. Bierstone, B. A. Khesin, A. G. Khovanskiĭ and J. E. Marsden. Providence, RI: Amer. Math. Soc., 1999, 209–223. (Fields Inst. Commun., 24.)

    Google Scholar 

  4. Mond D., van Straten D. Milnor number equals Tjurina number for functions on space curves. J. London Math. Soc., Ser. 2, 2001, 63(1), 177–187.

    Article  MathSciNet  MATH  Google Scholar 

  5. van Straten D. Private communication.

    Google Scholar 

1970-15 — S. K. Lando

  1. Arnold V. I. Topological classification of trigonometric polynomials and combinatorics of graphs with an equal number of vertices and edges. Funct. Anal. Appl., 1996, 30(1), 1–14.

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold V. I. Critical points of functions and the classification of caustics. Uspekhi Mat. Nauk, 1974, 29(3), 243–244 (in Russian). [Reprinted in: Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 213–214.]

    Google Scholar 

  3. Crescimanno M., Taylor W. Large N phases of chiral QCD2. Nuclear Phys. B, 1995, 437(1), 3–24.

    Article  MathSciNet  MATH  Google Scholar 

  4. Dubrovin B. A. Geometry of 2D topological field theories. In: Integrable Systems and Quantum Groups (Montecatini Terme, 1993). Editors: M. Francaviglia and S. Greco. Berlin: Springer and Florence: Centro Internazionale Matematico Estivo, 1996, 120–348. (Lecture Notes in Math., 1620; Fondazione C. I. M. E.)

    Chapter  Google Scholar 

  5. Ekedahl T., Lando S. K., Shapiro M. Z., Vainshtein A. D. On Hurwitz numbers and Hodge integrals. C. R. Acad. Sci. Paris, Sér. I Math., 1999, 328(12), 1175–1180.

    MathSciNet  MATH  Google Scholar 

  6. Ekedahl T., Lando S. K., Shapiro M. Z., Vainshtein A. D. Hurwitz numbers and intersections on moduli spaces of curves. Invent. Math., 2001, 146(2), 297–327.

    Article  MathSciNet  MATH  Google Scholar 

  7. El Marraki M., Hanusse N., Zipperer J., Zvonkine A. D. Cacti, braids and complex polynomials. Sémin. Lotharing. de Combinatoire, 1997, 37, Art. B37b, 36 pp. (electronic). [Internet: http://www-irma.u-strasbg.fr/EMIS/journals/SLC]

    Google Scholar 

  8. Goryunov V. V., Lando S. K. On enumeration of meromorphic functions on the line. In: The Arnoldfest. Proceedings of a conference in honour of V. I. Arnold for his sixtieth birthday (Toronto, 1997). Editors: E. Bierstone, B. A. Khesin, A. G. Khovanskiĭ and J. E. Marsden. Providence, RI: Amer. Math. Soc., 1999, 209–223. (Fields Inst. Commun., 24.)

    Google Scholar 

  9. Goulden I. P., Jackson D. M. The combinatorial relationship between trees, cacti and certain connection coefficients for the symmetric group. European J. Combinatorics, 1992, 13(5), 357–365.

    Article  MathSciNet  MATH  Google Scholar 

  10. Goulden I. P., Jackson D. M. Transitive factorization into transpositions, and holomorphic mappings on the sphere. Proc. Amer. Math. Soc., 1997, 125(1), 51–60.

    Article  MathSciNet  MATH  Google Scholar 

  11. Goulden I. P., Jackson D. M., Vainshtein A. D. The number of ramified coverings of the sphere by the torus and surfaces of higher genera. [Internet: http://www.arXiv.org/abs/math.AG/9902125]

    Google Scholar 

  12. Graber T., Pandharipande R. Localization of virtual classes. [Internet: http://www.arXiv.org/abs/math.AG/9708001]

    Google Scholar 

  13. Hurwitz A. Über Riemann'sche Flächen mit gegebenen Verzweigungspunkten. Math. Ann., 1891, 39(1), 1–61.

    Article  MathSciNet  Google Scholar 

  14. Lando S. K., Zvonkine D. A. On multiplicities of the Lyashko-Looijenga mapping on the discriminant strata. Funct. Anal. Appl., 1999, 33(3), 178–188.

    Article  MathSciNet  MATH  Google Scholar 

  15. Looijenga E. J. N. The complement of the bifurcation variety of a simple singularity. Invent. Math., 1974, 23(2), 105–116.

    Article  MathSciNet  MATH  Google Scholar 

  16. Lyashko O. V. Geometry of bifurcation diagrams. In: Itogi Nauki i Tekhniki VINITI. Current Problems in Mathematics, Vol. 22. Moscow: VINITI, 1983, 99–129 (in Russian). [The English translation: J. Sov. Math., 1984, 27, 2736–2759.]

    Google Scholar 

  17. Mednykh A. D. Determination of the number of nonsingular coverings of a compact Riemann surface. Sov. Math. Dokl., 1978, 239(2), 269–271.

    MathSciNet  Google Scholar 

  18. Mednykh A. D. Branched coverings of Riemann surfaces whose branch orders coincide with the multiplicity. Commun. Algebra, 1990, 18(5), 1517–1533.

    Article  MathSciNet  MATH  Google Scholar 

  19. Natanzon S. M. Topology of 2-dimensional coverings and meromorphic functions on real and complex algebraic curves. Trudy Semin. Vekt. Tenz. Anal., 1988, 23, 79–103 (in Russian) [The English translation: Selecta Math. Sov., 1993, 12(3), 251–291.]

    MathSciNet  MATH  Google Scholar 

  20. Strehl V. Minimal transitive products of transpositions: the reconstruction of a proof by A. Hurwitz. Sémin. Lotharing. de Combinatorie, 1996, 37, Art. B37c, 12 pp. (electronic). [Internet: http://www-irma.u-strasbg.fr/EMIS/journals/SLC]

    Google Scholar 

  21. Shapiro B. Z., Shapiro M. Z., Vainshtein A. D. Ramified coverings of S2 with one degenerate branching point and enumeration of edge-oriented graphs. In: Topics in Singularity Theory. V. I. Arnold's 60th Anniversary Collection. Editors: A. Khovanskiĭ, A. Varchenko and V. Vassiliev. Providence, RI: Amer. Math. Soc., 1997, 219–227. (AMS Transl., Ser. 2, 180; Adv. Math. Sci., 34.)

    Google Scholar 

  22. Zdravkovska S. The topological classification of polynomial mappings. Uspekhi Mat. Nauk, 1970, 25(4), 179–180 (in Russian).

    MathSciNet  MATH  Google Scholar 

  23. Zvonkine D. A. Multiplicities of the Lyashko-Looijenga map on its strata. C. R. Acad. Sci. Paris, Sér. I Math., 1997, 324(12), 1349–1353.

    MathSciNet  MATH  Google Scholar 

1970-15 — S. M. Natanzon

  1. Arnold V. I. Topological classification of trigonometric polynomials and combinatorics of graphs with an equal number of vertices and edges. Funct. Anal. Appl., 1996, 30(1), 1–14.

    Article  MathSciNet  MATH  Google Scholar 

  2. Diaz S., Edidin D. Towards the homology of Hurwitz spaces. J. Differ. Geom., 1996, 43(1), 66–98.

    MathSciNet  MATH  Google Scholar 

  3. Dubrovin B. A. Geometry of 2D topological field theories. In: Integrable Systems and Quantum Groups (Montecatini Terme, 1993). Editors: M. Francaviglia and S. Greco. Berlin: Springer, 1996, 120–348. (Lecture Notes in Math., 1620.)

    Chapter  Google Scholar 

  4. Guest M. A., Kozlowski A., Murayama M., Yamaguchi K. The homotory type of the space of rational functions. J. Math. Kyoto Univ., 1995, 35(4), 631–638.

    MathSciNet  MATH  Google Scholar 

  5. Harris J., Mumford D. On the Kodaira dimension of the moduli space of curves. Invent. Math., 1982, 67(1), 23–86.

    Article  MathSciNet  MATH  Google Scholar 

  6. Hurwitz A. Über Riemann'sche Flächen mit gegebenen Verzweigungspunkten. Math. Ann., 1891, 39(1), 1–61.

    Article  MathSciNet  Google Scholar 

  7. KhovanskiĬ A. G., Zdravkovska S. Branched covers of S2 and braid groups. J. Knot Theory Ramifications, 1996, 5(1), 55–75.

    Article  MathSciNet  Google Scholar 

  8. Kontsevich M., Manin Yu. Gromov-Witten classes, quantum cohomology and enumerative geometry. Commun. Math. Phys., 1994, 164(3), 525–562.

    Article  MathSciNet  MATH  Google Scholar 

  9. Natanzon S. M. Spaces of real meromorphic functions on real algebraic curves. Sov. Math. Dokl., 1984, 30(3), 724–726.

    MathSciNet  MATH  Google Scholar 

  10. Natanzon S. M. Uniformization of spaces of meromorphic functions. Sov. Math. Dokl., 1986, 33(2), 487–490.

    MATH  Google Scholar 

  11. Natanzon S. M. Topology of 2-dimensional coverings and meromorphic functions on real and complex algebraic curves. Trudy Semin. Vekt. Tenz. Anal., 1988, 23, 79–103 (in Russian) [The English translation: Selecta Math. Sov., 1993, 12(3), 251–291.]

    MathSciNet  MATH  Google Scholar 

  12. Natanzon S. M. Spaces of meromorphic functions on Riemann surfaces. In: Topics in Singularity Theory. V. I. Arnold's 60th Anniversary Collection. Editors: A. Khovanskiĭ, A. Varchenko and V. Vassiliev. Providence, RI: Amer. Math. Soc., 1997, 175–180. (AMS Transl., Ser. 2, 180; Adv. Math. Sci., 34.)

    Google Scholar 

  13. Natanzon S. M. Moduli of real algebraic surfaces and their superanalogues. Differentials, spinors and Jacobians of real curves. Russian Math. Surveys, 1999, 54(6), 1091–1147.

    Article  MathSciNet  Google Scholar 

  14. Natanzon S. M. Moduli of Riemann surfaces, Hurwitz-type spaces, and their superanalogues. Russian Math. Surveys, 1999, 54(1), 61–117.

    Article  MathSciNet  MATH  Google Scholar 

  15. Natanzon S. M., Shadrin S. V. Topological classification of unitary functions of arbitrary genus. Russian Math. Surveys, 2000, 55(6), 1163–1164.

    Article  MathSciNet  MATH  Google Scholar 

  16. Natanzon S. M., Turaev V. G. A compactification of the Hurwitz space. Topology, 1999, 38(4), 889–914.

    Article  MathSciNet  MATH  Google Scholar 

  17. Wajnryb B. Orbits of Hurwitz action for coverings of a sphere with two special fibers. Indag. Math. (N. S.), 1996, 7(4), 549–558.

    Article  MathSciNet  MATH  Google Scholar 

1970-15 — D. A. Zvonkine

  1. Ekedahl T., Lando S., Shapiro M., Vainshtein A. Hurwitz numbers and intersections on moduli spaces of curves. Invent. Math., 2001, 146(2), 297–327.

    Article  MathSciNet  MATH  Google Scholar 

  2. Goulden I. P., Jackson D. M The combinatorial relationship between trees, cacti and certain connection coefficients for the symmetric group. European J. Combinatorics, 1992, 13(5), 357–365.

    Article  MathSciNet  MATH  Google Scholar 

  3. Goulden I. P., Jackson D. M. Transitive factorization into transpositions, and holomorphic mappings on the sphere. Proc. Amer. Math. Soc., 1997, 125(1), 51–60.

    Article  MathSciNet  MATH  Google Scholar 

  4. Goupil A., Schaeffer G. Factoring n-cycles and counting maps of given genus. European J. Combinatorics, 1998, 19(7), 819–834.

    Article  MathSciNet  MATH  Google Scholar 

  5. Lando S. K., Zvonkine D. A. On multiplicities of the Lyashko-Looijenga mapping on the discriminant strata. Funct. Anal. Appl., 1999, 33(3), 178–188.

    Article  MathSciNet  MATH  Google Scholar 

  6. Mednykh A. D. Nonequivalent coverings of Riemann surfaces with a prescribed ramification type. Sib. Math. J., 1984, 25(4), 606–625.

    Article  MathSciNet  MATH  Google Scholar 

  7. Okounkov A., Pandharipande R. Gromov-Witten theory, Hurwitz numbers, and matrix models, I. [Internet: http://www.arXiv.org/abs/math.AG/0101147]

    Google Scholar 

  8. Zvonkine D. A. Transversal multiplicities of the Lyashko-Looijenga map. C. R. Acad. Sci. Paris, Sér. I Math., 1997, 325(6), 589–594.

    MathSciNet  MATH  Google Scholar 

1970-16

  1. Arnold V. I. Algebraic unsolvability of the problem of Lyapunov stability and the problem of topological classification of singular points of an analytic system of differential equations. Funct. Anal. Appl., 1970, 4(3), 173–180.

    Article  Google Scholar 

  2. Arnold V. I. Algebraic unsolvability of the problem of stability and the problem of topological classification of singular points of analytic systems of differential equations. Uspekhi Mat. Nauk, 1970, 25(2), 265–266 (in Russian).

    Google Scholar 

  3. Arnold V. I. Local problems of analysis. Moscow Univ. Math. Bull., 1970, 25(2), 77–80.

    Google Scholar 

1971-1 — R. I. Bogdanov

  1. Bogdanov R. I. Factorization of diffeomorphisms over phase portraits of vector fields on the plane. Funct. Anal. Appl., 1997, 31(2), 126–128.

    Article  MathSciNet  MATH  Google Scholar 

1971-2 — M. B. Mishustin

  1. Arnold V. I. Remarks on singularities of finite codimension in complex dynamical systems. Funct. Anal. Appl., 1969, 3(1), 1–5. [The Russian original is reprinted in: Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 129–137.]

    Article  Google Scholar 

  2. Arnold V. I. Bifurcations of invariant manifolds of differential equations and normal forms in neighborhoods of elliptic curves. Funct. Anal. Appl., 1976, 10(4), 249–259.

    Article  Google Scholar 

  3. Arnold V. I. Geometrical Methods in the Theory of Ordinary Differential Equations, 2nd edition. New York: Springer, 1988. (Grundlehren der Mathematischen Wissenschaften, 250.) [The Russian original 1978.]

    Google Scholar 

  4. Bruno A. D. Normal form of differential equations with a small parameter. Math. Notes, 1974, 16, 832–836.

    Google Scholar 

  5. Burlakova L. A., Irtegov V. D., Novikov M. A. Stability and bifurcations of invariant manifolds of systems of bodies in Newton force field. In: International Aerospace Congress (Moscow, 1994). Moscow: Petrovka, 1994, 232–236.

    Google Scholar 

  6. Il'yashenko Yu. S., Pyartli A. S. Materialization of Poincaré resonances and divergence of normalizing series. Trudy Semin. Petrovskogo, 1981, 7, 3–49 (in Russian). [The English translation: J. Sov. Math., 1985, 31, 3053–3092.]

    MathSciNet  MATH  Google Scholar 

  7. Johnson M. E., Jolly M. S., Kevrekidis I. G. Two-dimensional invariant manifolds and global bifurcations: some approximation and visualization studies. Numerical Algorithms, 1997, 14(1–3), 125–140.

    Article  MathSciNet  MATH  Google Scholar 

  8. Llibre J., Nuñes A. Separatrix surfaces and invariant manifolds of a class of integrable Hamiltonian systems and their perturbations. Mem. Amer. Math. Soc., 1994, 107, viii+191 pp.

    Google Scholar 

  9. Pyartli A. S. Birth of complex invariant manifolds close to a singular point of a parametrically dependent vector field. Funct. Anal. Appl., 1972, 6(4), 339–340.

    Article  MATH  Google Scholar 

  10. Siberian Branch of Russian Academy of Sciences. Physical and Mathematical Sciences. Scientific report, 2000 (in Russian). [Internet: http://www.sbras.ru/win/sbras/rep/2000/fiz-mat/fmn1.html]

    Google Scholar 

1971-3

  1. Arnold V. I. Problèmes résolubles et problèmes irrésolubles analytiques et géométriques. In: Passion des Formes. Dynamique Qualitative Sémiophysique et Intelligibilité. Dédié à R. Thorn. Fontenay-St Cloud: ENS Éditions, 1994, 411–417; In: Formes et Dynamique, Renaissance d'un Paradigme. Hommage à René Thom. Paris: Eshel, 1995. [The Russian translation in: Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 577–582.]

    Google Scholar 

1971-4 — M. B. Sevryuk

  1. Arnold V. I., Kozlov V. V., NeĬshtadt A. I. Mathematical Aspects of Classical and Celestial Mechanics, 2nd edition. Berlin: Springer, 1993, Ch. 7, §5. (Encyclopædia Math. Sci., 3; Dynamical systems, III.) [The Russian original 1985.] [The second, revised and supplemented, Russian edition 2002.]

    Google Scholar 

  2. Karapetyan A. V., Rumyantsev V. V. Stability of Conservative and Dissipative Systems. Itogi Nauki i Tekhniki VINITI. General Mechanics, Vol. 6. Moscow: VINITI, 1983 (in Russian).

    Google Scholar 

  3. Kozlov V. V. Instability of an equilibrium in a potential field. Russian Math. Surveys, 1981, 36(1), 238–239.

    Article  MATH  Google Scholar 

  4. Kozlov V. V. On the instability of an equilibrium in a potential field. Russian Math. Surveys, 1981, 36(3), 256–257.

    Article  MATH  Google Scholar 

  5. Kozlov V. V. A conjecture on the existence of asymptotic motions in classical mechanics. Funct. Anal. Appl., 1982, 16(4), 303–304.

    Article  Google Scholar 

  6. Kozlov V. V. Asymptotic solutions of the equations of classical mechanics. J. Appl. Math. Mech., 1982, 46(4), 454–457.

    Article  MathSciNet  MATH  Google Scholar 

  7. Kozlov V. V. Asymptotic motions and the problem on the converse of the Lagrange-Dirichlet theorem. J. Appl. Math. Mech., 1986, 50(6), 719–725.

    Article  MathSciNet  MATH  Google Scholar 

  8. Kozlov V. V. On a problem by Kelvin. J. Appl. Math. Mech., 1989, 53(1), 133–135.

    Article  MathSciNet  MATH  Google Scholar 

  9. Kozlov V. V., Furta S. D. Asymptotics of the Solutions of Strongly Nonlinear Systems of Differential Equations. Moscow: Moscow University Press, 1996 (in Russian).

    Google Scholar 

  10. Kozlov V. V., Palamodov V. P. On the asymptotic solutions of the equations of classical mechanics. Sov. Math. Dokl., 1982, 25(2), 335–339.

    MathSciNet  MATH  Google Scholar 

  11. Lyapunov A. M. The General Problem of the Stability of Motion. London: Taylor & Francis, 1992. [The Russian original 1892.] [The first French translation 1907.]

    MATH  Google Scholar 

  12. Lyapunov A. M. On the instability of an equilibrium in some cases where the force function is not a maximum. In: Collected Papers, Vol. II. Moscow-Leningrad: the USSR Academy of Sciences Press, 1956, 391–400 (in Russian). [The original publication 1897.]

    Google Scholar 

  13. Palamodov V. P. On the stability of an equilibrium in a potential field. Funct. Anal. Appl., 1977, 11(4), 277–289.

    Article  MathSciNet  Google Scholar 

  14. Palamodov V. P. Stability of motion and algebraic geometry. In: Dynamical Systems in Classical Mechanics. Editor: V. V. Kozlov. Providence, RI: Amer. Math. Soc., 1995, 5–20. (AMS Transl., Ser. 2, 168; Adv. Math. Sci., 25.)

    Google Scholar 

  15. Rouche N., Habets P., Laloy M. Stability Theory by Liapunov's Direct Method. New York: Springer, 1977. (Appl. Math. Sci., 100.)

    MATH  Google Scholar 

  16. Rumyantsev V. V., SosnitskiĬ S. P. On the instability of an equilibrium of holonomic conservative systems. J. Appl. Math. Mech., 1993, 57(6), 1101–1122.

    Article  MathSciNet  MATH  Google Scholar 

  17. Tamm I. E. Basic Electricity Theory, 10th edition. Moscow: Nauka, 1989, Ch. I, § 19 (in Russian).

    Google Scholar 

1971-9 — S. Yu. Yakovenko

  1. Arnold V. I. Dynamics of complexity of intersections. Bol. Soc. Brasil. Mat. (N.S.), 1990, 21(1), 1–10. [The Russian translation in: Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 489–499.]

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold V. I. Dynamics of intersections. In: Analysis, et cetera. Research papers published in honor of Jürgen Moser's 60th birthday. Editors: P. H. Rabinowitz and E. Zehnder. Boston, MA: Academic Press, 1990, 77–84.

    Google Scholar 

  3. Arnold V. I. Bounds for Milnor numbers of intersections in holomorphic dynamical systems. In: Topological Methods in Modern Mathematics. Proceedings of the symposium in honor of John Milnor's sixtieth birthday (Stony Brook, NY, 1991). Editors: L. R. Goldberg and A. V. Phillips. Houston, TX: Publish or Perish, 1993, 379–390.

    Google Scholar 

  4. Gabrielov A. M., KhovanskiĬ A. G. Multiplicity of a Noetherian intersection. In: Geometry of Differential Equations. Editors: A. G. Khovanskiĭ, A. N. Varchenko and V. A. Vassiliev. Providence, RI: Amer. Math. Soc., 1998, 119–130. (AMS Transl., Ser. 2, 186; Adv. Math. Sci., 39.)

    Google Scholar 

  5. Novikov D. I., Yakovenko S. Yu. Trajectories of polynomial vector fields and ascending chains of polynomial ideals. Ann. Inst. Fourier (Grenoble), 1999, 49(2), 563–609.

    MathSciNet  MATH  Google Scholar 

  6. Risler J.-J. A bound for the degree of nonholonomy in the plane. Theoret. Comput. Sci., 1996, 157(1), 129–136.

    Article  MathSciNet  MATH  Google Scholar 

1971-11 — A. M. Lukatskiĭ

  1. Arnold V. I., Khesin B. A. Topological Methods in Hydrodynamics. New York: Springer, 1998. (Appl. Math. Sci., 125.)

    MATH  Google Scholar 

  2. Chepyzhov V. V., Vishik M. I. A Hausdorff dimension estimate for kernel sections of nonautonomous evolution equations. Indiana Univ. Math. J., 1993, 42(3), 1057–1076.

    Article  MathSciNet  MATH  Google Scholar 

  3. Il'yashenko Yu. S. Weakly contracting systems and attractors of the Galerkin approximations of the Navier-Stokes equations on a two-dimensional torus. Uspekhi Mekhaniki, 1982, 5(1–2), 31–63 (in Russian). [The English translation: Selecta Math. Sov., 1992, 11(3), 203–239.]

    MathSciNet  Google Scholar 

  4. Il'yashenko Yu. S. On the dimension of attractors of k-contracting systems in an infinite-dimensional space. Moscow Univ. Math. Bull., 1983, 38(3), 61–69.

    MATH  Google Scholar 

  5. Il'yashenko Yu. S., Chetaev A. N. On the dimension of attractors for a class of dissipative systems. J. Appl. Math. Mech., 1983, 46(3), 290–295.

    Article  MathSciNet  Google Scholar 

  6. Il'yin A. A. Partly dissipative semigroups generated by the Navier-Stokes system on two-dimensional manifolds, and their attractors. Sb. Math., 1994, 78(1), 47–76.

    MathSciNet  Google Scholar 

  7. Il'yin A. A. Attractors for Navier-Stokes equations in domains with finite measure. Nonlinear Anal., 1996, 27(5), 605–616.

    Article  MathSciNet  Google Scholar 

  8. Ladyzhenskaya O. A. The finite-dimensionality of bounded invariant sets for the Navier-Stokes system and other dissipative systems. Zap. Nauch. Semin. Leningrad. Otd. Mat. Inst. Steklova, 1982, 115, 137–155 (in Russian). (Boundary Problems in Mathematical Physics and Related Questions of the Function Theory, 14.)

    MathSciNet  MATH  Google Scholar 

  9. Témam R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. New York: Springer, 1988. (Appl. Math. Sci., 68.)

    MATH  Google Scholar 

1972-2 — S. V. Chmutov

  1. Gabrielov A. M. Intersection matrices for certain singularities. Funct. Anal. Appl., 1973, 7(3), 182–193.

    Article  MathSciNet  MATH  Google Scholar 

  2. Looijenga E. J. N. On the semi-universal deformation of a simple-elliptic hyper-surface singularity. II. The discriminant. Topology, 1978, 17(1), 23–40.

    Article  MathSciNet  MATH  Google Scholar 

1972-3 — V. D. Sedykh

  1. Arnold V. I. Lectures on bifurcations in versal families. Russian Math. Surveys, 1972, 27(5), 54–123.

    Article  Google Scholar 

  2. Arnold V. I. Catastrophe Theory. Berlin: Springer, 1992, Sect. 10. [The Russian original 1990.]

    Google Scholar 

  3. Arnold V. I., Vassiliev V. A., Goryunov V. V., Lyashko O. V. Singularities. I. Local and Global Theory. Berlin: Springer, 1993, Sect. 3.3. (Encyclopædia Math. Sci., 6; Dynamical Systems, VI.) [The Russian original 1988.]

    Google Scholar 

  4. Arnold V. I., Gusein-Zade S. M., Varchenko A. N. Singularities of Differentiable Maps, Vol. I: The classification of critical points, caustics and wave fronts. Boston, MA: Birkhäuser, 1985, Sect. 10.3.5. (Monographs in Math., 82.) [The Russian original 1982.]

    Google Scholar 

  5. LevantovskiĬ L. V. Singularities of the boundary of the stability domain. Funct. Anal. Appl., 1982, 16(1), 34–37.

    Article  Google Scholar 

  6. Matov V. I. The topological classification of germs of the maximum and minimax functions of a family of functions in general position. Russian Math. Surveys, 1982, 37(4), 127–128.

    Article  MathSciNet  MATH  Google Scholar 

1972-5 — V. N. Karpushkin

  1. Arnold V. I. Remarks on the stationary phase method and Coxeter numbers. Russian Math. Surveys, 1973, 28(5), 19–48.

    Article  Google Scholar 

  2. Colin de Verdière Y. Nombre de points entiers dans une famille homothétique de domaines de \(\mathbb{R}^n \). Ann. Sci. École Norm. Sup., Sér. 4, 1977, 10(4), 559–575.

    MATH  Google Scholar 

  3. Duistermaat J. Oscillatory integrals, Lagrangian immersions and unfolding of singularities. Commun. Pure Appl. Math., 1974, 27(2), 209–281.

    Article  MathSciNet  Google Scholar 

  4. Karpushkin V. N. Uniform estimates of integrals with unimodal phase. Uspekhi Mat. Nauk, 1983, 38(3), 128 (in Russian).

    Google Scholar 

  5. Karpushkin V. N. Uniform estimates of oscillatory integrals with a parabolic or hyperbolic phase. Trudy Semin. Petrovskogo, 1983, 9, 1–39 (in Russian). [The English translation: J. Sov. Math., 1986, 33, 1159–1188.]

    MathSciNet  Google Scholar 

  6. Karpushkin V. N. A theorem concerning uniform estimates of oscillatory integrals when the phase is a function of two variables. Trudy Semin. Petrovskogo, 1984, 10, 150–169 (in Russian). [The English translation: J. Sov. Math., 1986, 35, 2809–2826.]

    MathSciNet  MATH  Google Scholar 

  7. Karpushkin V. N. Uniform estimates for oscillatory integrals and volumes under a partial deformation of a phase. In: Geometry and the Theory of Singularities in Nonlinear Equations. Voronezh: Voronezh University Press, 1987, 151–159 (in Russian). (Novoe v Global'nom Analize, 7.)

    Google Scholar 

  8. Karpushkin V. N. Uniform estimates for some oscillating integrals. Sib. Math. J., 1989, 30(2), 240–249.

    Article  MathSciNet  MATH  Google Scholar 

  9. Karpushkin V. N. Oscillatory integrals and volumes with semiquasihomogeneous phase. Funct. Anal. Appl., 1992, 26(1), 46–48.

    Article  MathSciNet  MATH  Google Scholar 

  10. Karpushkin V. N. Dominant term in the asymptotics of oscillatory integrals with a phase of the series T. Math. Notes, 1994, 56(6), 1304–1305.

    Article  MathSciNet  MATH  Google Scholar 

  11. Karpushkin V. N. A remark about uniform estimates and counterexample of A. N. Varchenko. In: Some Problems of Fundamental and Applied Mathematics. Moscow: Moscow Instintute of Physics and Technology Press, 1998, 74–79 (in Russian).

    Google Scholar 

  12. Karpushkin V. N. Uniform estimates of oscillatory integrals with phase from the series \(\tilde R_m \). Math. Notes, 1998, 64(3), 404–406.

    Article  MathSciNet  MATH  Google Scholar 

  13. Karpushkin V. N. Uniform estimates of volumes. Proc. Steklov Inst. Math., 1998, 221, 214–220.

    MathSciNet  Google Scholar 

  14. Popov D. A. Estimates with constants for some classes of oscillatory integrals. Russian Math. Surveys, 1997, 52(1), 73–145.

    Article  MathSciNet  MATH  Google Scholar 

  15. Varchenko A. N. Newton polyhedra and estimation of oscillating integrals. Funct. Anal. Appl., 1976, 10(3), 175–196.

    Article  MathSciNet  MATH  Google Scholar 

  16. Vinogradov I. M. The Method of Trigonometric Sums in the Number Theory. Moscow: Nauka, 1971 (in Russian).

    MATH  Google Scholar 

1972-6 — S. M. Gusein-Zade

  1. Arnold V. I. Remarks on the stationary phase method and Coxeter numbers. Russian Math. Surveys, 1973, 28(5), 19–48.

    Article  Google Scholar 

  2. Tyurina G. N. The topological properties of isolated singularities of complex spaces of codimension one. Math. USSR, Izv., 1968, 2, 557–571.

    Article  MATH  Google Scholar 

1972-7

  1. Arnold V. I. Modes and quasimodes. Funct. Anal. Appl., 1972, 6(2), 94–101. [The Russian original is reprinted in: Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 189–202.]

    Article  Google Scholar 

1972-7 — Ya. M. Dymarskiĭ

  1. DymarskiĬ Ya. M. On manifolds of self-adjoint elliptic operators with multiple eigenvalues. Methods Funct. Anal. Topology, 2001, 7(2), 68–74.

    MathSciNet  Google Scholar 

  2. DymarskiĬ Ya. M. Manifolds of eigenfunctions and potentials of a family of periodic Sturm-Liouville problems. Ukrain. Math. J., 2002, 54(8), 1251–1264.

    Article  Google Scholar 

  3. Lupo D., Micheletti A. M. On multiple eigenvalues of selfadjoint compact operators. J. Math. Anal. Appl., 1993, 172(1), 106–116.

    Article  MathSciNet  MATH  Google Scholar 

  4. Lupo D., Micheletti A. M. A remark on the structure of the set of perturbations which keep fixed the multiplicity of two eigenvalues. Revista Mat. Apl., 1995, 16(2), 47–56.

    MathSciNet  MATH  Google Scholar 

  5. Lupo D., Micheletti A. M. On the persistence of the multiplicity of eigenvalues for some variational elliptic operator depending on the domain. J. Math. Anal. Appl., 1995, 193(3), 990–1002.

    Article  MathSciNet  MATH  Google Scholar 

  6. Uhlenbeck K. Generic properties of eigenfunctions. Amer. J. Math., 1976, 98(4), 1059–1078.

    Article  MathSciNet  MATH  Google Scholar 

1972-8 — V. N. Karpushkin

  1. Arnold V. I. Modes and quasimodes. Funct. Anal. Appl., 1972, 6(2), 94–101. [The Russian original is reprinted in: Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 189–202.]

    Article  Google Scholar 

  2. Arnold V. I. Frequent representations. Moscow Math. J., 2003, 3(4), 14 pp.

    Google Scholar 

  3. Karpushkin V. N. On the asymptotic behavior of eigenvalues of symmetric manifolds and on most probable representations of finite groups. Moscow Univ. Math. Bull., 1974, 29(2), 136–139.

    MATH  Google Scholar 

1972-9 — A. I. Neĭshtadt

  1. Arnold V. I. Geometrical Methods in the Theory of Ordinary Differential Equations, 2nd edition. New York: Springer, 1988. (Grundlehren der Mathematischen Wissenschaften, 250.) [The Russian original 1978.]

    Google Scholar 

  2. Arnold V. I., Kozlov V. V., NeĬshtadt A. I. Mathematical Aspects of Classical and Celestial Mechanics, 2nd edition. Berlin: Springer, 1993. (Encyclopædia Math. Sci., 3; Dynamical Systems, III.) [The Russian original 1985.] [The second, revised and supplemented, Russian edition 2002.]

    Google Scholar 

  3. Bakhtin V. I. Averaging method in multi-frequency systems. Ph. D. Thesis, Moscow State University, 1986 (in Russian).

    Google Scholar 

  4. Bakhtin V. I. Averaging in a general-position single-frequency system. Differ. Equations, 1991, 27(9), 1051–1061.

    MathSciNet  Google Scholar 

  5. NeĬshtadt A. I. On some resonant problems in nonlinear systems. Ph. D. Thesis, Moscow State University, 1975 (in Russian).

    Google Scholar 

  6. NeĬshtadt A. I. Passage through a resonances in the two-frequency problem. Sov. Phys. Dokl., 1975, 20(3), 189–191.

    MATH  Google Scholar 

  7. NeĬshtadt A. I. Scattering by resonances. Celest. Mech. Dynam. Astron., 1996/97, 65(1–2), 1–20.

    Google Scholar 

  8. Pronchatov V. E. An error estimate for the averaging method in the two-frequency problem. Math. USSR, Sb., 1985, 50(1), 241–258.

    Article  MathSciNet  MATH  Google Scholar 

  9. Pronchatov V. E. On an error estimate for the averaging method in the two-frequency problem. Math. USSR, Sb., 1989, 62(1), 29–40.

    Article  MathSciNet  MATH  Google Scholar 

1972-10 — A. I. Neĭshtadt

  1. Arnold V. I. Conditions for the applicability and estimate of the error of an averaging method for systems which pass through the states of resonance in the course of their evolution. Sov. Math. Dokl., 1965, 6, 331–334. [The Russian original is reprinted in: Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 69–74.]

    Google Scholar 

  2. Anosov D. V. Averaging in systems of ordinary differential equations with rapidly oscillating solutions. Izv. Akad. Nauk SSSR, Ser. Mat., 1960, 24(5), 721–742 (in Russian).

    MathSciNet  MATH  Google Scholar 

  3. Bakhtin V. I. Averaging in multi-frequency systems. Funct. Anal. Appl., 1986, 20(2), 83–88.

    Article  MathSciNet  MATH  Google Scholar 

  4. Dodson M. M., Rynne B. P., Vickers J. A. G. Averaging in multi-frequency systems. Nonlinearity, 1989, 2(1), 137–148.

    Article  MathSciNet  MATH  Google Scholar 

  5. Kasuga T. On the adiabatic theorem for the Hamiltonian system of differential equations in the classical mechanics, I; II; III. Proc. Japan. Acad., 1961, 37(7), 366–371; 372–376; 377–382.

    Article  MathSciNet  Google Scholar 

  6. NeĬshtadt A. I. Averaging in multi-frequency systems, II. Sov. Phys. Dokl., 1976, 21(2), 80–82.

    Google Scholar 

1972-11 — V. A. Vassiliev

  1. Goryunov V. V. Cohomology of braid groups of series C and D. Trans. Moscow Math. Soc., 1982, 42, 233–241.

    Google Scholar 

  2. Salvetti M. The homotopy tupe of Artin groups. Math. Res. Lett., 1994, 1(5), 565–577.

    MathSciNet  MATH  Google Scholar 

1972-12 — V. D. Sedykh

  1. Bogaevsky I. A. Singularities of convex hulls of three-dimensional hypersurfaces. Proc. Steklov Inst. Math., 1998, 221, 71–90.

    Google Scholar 

  2. Kiselman C. O. How smooth is the shadow of a smooth convex body. J. London Math. Soc., Ser. 2, 1986, 33(1), 101–109; Serdica Math. J., 1986, 12(2), 189–195.

    Article  MathSciNet  MATH  Google Scholar 

  3. Sedykh V. D. Singularities of the convex hull of a curve in \(\mathbb{R}^3 \). Funct. Anal. Appl., 1977, 11(1), 72–73.

    Article  MathSciNet  MATH  Google Scholar 

  4. Sedykh V. D. Moduli of singularities of convex hulls. Russian Math. Surveys, 1981, 36(5), 175–176.

    Article  MathSciNet  MATH  Google Scholar 

  5. Sedykh V. D. Structure of the convex hull of a space curve. Trudy Semin. Petrovskogo, 1981, 6, 239–256 (in Russian). [The English translation: J. Sov. Math., 1986, 33, 1140–1153.]

    MathSciNet  MATH  Google Scholar 

  6. Sedykh V. D. Singularities of convex hulls. Sib. Math. J., 1983, 24(3), 447–461.

    Article  MathSciNet  Google Scholar 

  7. Sedykh V. D. Convex hulls and the Legendre transform. Sib. Math. J., 1983, 24(6), 923–933.

    Article  MathSciNet  MATH  Google Scholar 

  8. Sedykh V. D. Functional moduli of singularities of convex hulls of manifolds of codimension 1 and 2. Math. USSR, Sb., 1984, 47(1), 223–236.

    Article  MATH  Google Scholar 

  9. Sedykh V. D. Stabilization of singularities of convex hulls. Math. USSR, Sb., 1989, 63(2), 499–505.

    Article  MathSciNet  MATH  Google Scholar 

  10. Sedykh V. D. The sewing of a swallowtail and a Whitney umbrella in a four-dimensional controlled system. In: Proceedings of Gubkin State Oil and Gas Academy. Moscow: Neft’ i Gaz, 1997, 58–68 (in Russian).

    Google Scholar 

  11. Zakalyukin V. M. Singularities of convex hulls of smooth manifolds. Funct. Anal. Appl., 1978, 11(3), 225–227.

    Article  MathSciNet  MATH  Google Scholar 

1972-13 — V. A. Vassiliev

  1. Arnold V. I. Normal forms of functions in neighborhoods of degenerate critical points. Russian Math. Surveys, 1974, 29(2), 10–50.

    Article  Google Scholar 

  2. Kushnirenko A. G. Polyèdres de Newton et nombres de Milnor. Invent. Math., 1976, 32(1), 1–31.

    Article  MathSciNet  MATH  Google Scholar 

  3. Varchenko A. N. A lower bound for the codimension of the stratum μ = const in terms of the mixed Hodge structure. Moscow Univ. Math. Bull., 1982, 37(6), 30–33.

    MATH  Google Scholar 

1972-14 — V. V. Goryunov

  1. Arnold V. I., Vassiliev V. A., Goryunov V. V., Lyashko O. V. Singularities. I. Local and Global Theory. Berlin: Springer, 1993, Ch. 2, Sect. 5. (Encyclopædia Math. Sci., 6; Dynamical Systems, VI.) [The Russian original 1989.]

    Google Scholar 

  2. Arnold V. I., Vassiliev V. A., Goryunov V. V., Lyashko O. V. Singularities. II. Classification and Applications. Berlin: Springer, 1993, Ch. 1. (Encyclopædia Math. Sci., 39; Dynamical Systems, VIII.) [The Russian original 1989.]

    Google Scholar 

  3. Goryunov V. V., Baines C. E. Cyclically equivariant function singularities and unitary reflection groups G(2m,2,n), G9 and G31. St. Petersburg Math. J., 2000, 11(5), 761–774.

    MathSciNet  MATH  Google Scholar 

  4. Jaworski P. Distribution of critical values of miniversal deformations of parabolic singularities. Invent. Math., 1986, 86(1), 19–33.

    Article  MathSciNet  MATH  Google Scholar 

  5. Knörrer H. Zum K(π, 1)-Problem für isolierte Singularitäten von vollständigen Durchschnitten. Compos. Math., 1982, 45(3), 333–340.

    MATH  Google Scholar 

  6. Nakamura T. A note on the K(π, 1) property of the orbit space of the unitary reflection group G(m,l,n). Sci. Papers College Arts Sci. Univ. Tokyo, 1983, 33(1), 1–6.

    MathSciNet  MATH  Google Scholar 

  7. Shephard G. C., Todd J. A. Finite unitary reflection groups. Canad. J. Math., 1954, 6, 274–304.

    MathSciNet  MATH  Google Scholar 

1972-14 — V. A. Vassiliev

  1. Brieskorn E. Sur les groupes de tresses [d'après V. I. Arnold]. In: Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401. Berlin: Springer, 1973, 21–44. (Lecture Notes in Math., 317.)

    Chapter  Google Scholar 

  2. Deligne P. Les immeubles de groupes de tresses généralisés. Invent Math., 1972, 17, 273–302.

    Article  MathSciNet  MATH  Google Scholar 

  3. Goryunov V. V. Geometry of bifurcation diagrams of simple projections onto the line. Funct. Anal. Appl., 1981, 15(2), 77–82.

    Article  MathSciNet  MATH  Google Scholar 

  4. Goryunov V. V. Projection of 0-dimensional complete intersection onto a line and the K(π, 1)-conjecture. Russian Math. Surveys, 1982, 37(3), 206–208.

    Article  MathSciNet  MATH  Google Scholar 

  5. Goryunov V. V. Singularities of projections of complete intersectrions. In: Itogi Nauki i Tekhniki VINITI. Current Problems in Mathematics, Vol. 22. Moscow: VINITI, 1983, 167–206 (in Russian). [The English translation: J. Sov. Math., 1984, 27, 2785–2811.]

    Google Scholar 

  6. Goryunov V. V. Vector fields and functions on the discriminants of complete intersections, and bifurcation diagrams of projections. In: Itogi Nauki i Tekhniki VINITI. Current Problems in Mathematics. Newest Results, Vol. 33. Moscow: VINITI, 1988, 31–54 (in Russian). [The English translation: J. Sov. Math., 1990, 52(4), 3231–3245.]

    Google Scholar 

  7. Knörrer H. Zum K(π, 1)-Problem für isolierte Singularitäten von vollständigen Durchschnitten. Compos. Math., 1982, 45(3), 333–340.

    MATH  Google Scholar 

  8. Looijenga E. J. N. The complement of the bifurcation variety of a simple singularity. Invent. Math., 1974, 23(2), 105–116.

    Article  MathSciNet  MATH  Google Scholar 

  9. Lyashko O. V. The geometry of bifurcation diagrams. Russian Math. Surveys, 1979, 34(3), 209–210.

    Article  MathSciNet  Google Scholar 

1972-16 — V. I. Arnold

  1. Roytvarf A. A. The motion of a continuous medium in the force field with a rooted singularity. Moscow Univ. Mech. Bull., 1987, 42(1), 24–27.

    Google Scholar 

  2. Roytvarf A. A. Two-valued velocity field with a square root singularity. Moscow Univ. Mech. Bull., 1988, 43(3), 16–19.

    Google Scholar 

  3. Roytvarf A. A. On the dynamics of a one-dimensional self-gravitating medium. Physica D, 1994, 73(3), 189–204.

    Article  MathSciNet  MATH  Google Scholar 

1972-17

  1. Arnold V. I. A comment to H. Poincaré's paper “Sur un théorème de géométrie.” In: Poincaré H. Selected Works in Three Volumes (in Russian). Editors: N. N. Bogolyubov, V. I. Arnold and I. B. Pogrebysskiĭ. Vol. II. New methods of celestial mechanics. Topology. Number theory. Moscow: Nauka, 1972, 987–989 (in Russian).

    Google Scholar 

  2. Arnold V. I. Sur une propriété topologique des applications globalement canoniques de la mécanique classique. C. R. Acad. Sci. Paris, 1965, 261(19), 3719–3722.

    Google Scholar 

  3. The Russian translation in: [2b] Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 81–86.

    Google Scholar 

1972-18

  1. Arnold V. I. A comment to H. Poincaré's paper “Sur un théorème de géométrie.” In: Poincaré H. Selected Works in Three Volumes (in Russian). Editors: N. N. Bogolyubov, V. I. Arnold and I. B. Pogrebysskiĭ. Vol. II. New methods of celestial mechanics. Topology. Number theory. Moscow: Nauka, 1972, 987–989 (in Russian).

    Google Scholar 

1972-20 — A. A. Glutsyuk, M. B. Sevryuk

  1. Arnold V. I. On mappings of the circle onto itself. Diploma Thesis, Faculty of Mechanics and Mathematics of Moscow State University, 1959 (in Russian).

    Google Scholar 

  2. Arnold V. I. On analytic mappings of the circle onto itself. Uspekhi Mat. Nauk, 1960, 15(2), 212–214 (in Russian).

    Google Scholar 

  3. Arnold V. I. Small denominators I. Mappings of the circumference onto itself. Izv. Akad. Nauk SSSR, Ser. Mat., 1961, 25(1), 21–86; corrigenda: 1964, 28(2), 479–480 (in Russian). [The English translation: AMS Transl., Ser. 2, 1965, 46, 213–284.]

    MathSciNet  Google Scholar 

  4. Arnold V. I. Geometrical Methods in the Theory of Ordinary Differential Equations, 2nd edition. New York: Springer, 1988, §§ 11–12. (Grundlehren der Mathematischen Wissenschaften, 250.) [The Russian original 1978.]

    Google Scholar 

  5. Arnold V. I. Sur quelques problèmes de la théorie des systèmes dynamiques. Topol. Methods Nonlinear Anal., 1994, 4(2), 209–225. [The Russian translation in: Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 533–551.]

    MathSciNet  MATH  Google Scholar 

  6. Arnold V. I. From Hilbert's superposition problem to dynamical systems. In: The Arnoldfest. Proceedings of a conference in honour of V. I. Arnold for his sixtieth birthday (Toronto, 1997). Editors: E. Bierstone, B. A. Khesin, A. G. Khovanskiĭ and J. E. Marsden. Providence, RI: Amer. Math. Soc., 1999, 1–18. (Fields Institute Commun., 24.) [The Russian version in: Vladimir Igorevich Arnold. Selecta-60. Moscow: PHASIS, 1997, 727–740.]

    Google Scholar 

  7. Herman M. R. Conjugaison C des difféomorphismes du cercle dont le nombre de rotations satisfait à une condition arithmétique. C. R. Acad. Sci. Paris, Sér. A–B, 1976, 282(10), Ai, A503–A506.

    MathSciNet  Google Scholar 

  8. Herman M. R. Conjugaison C des difféomorphismes du cercle pour presque tout nombre de rotation. C. R. Acad. Sci. Paris, Sér. A–B, 1976, 283(8), Aii, A579–A582.

    MathSciNet  Google Scholar 

  9. Herman M. R. La conjugaison des difféomorphismes du cercle à des rotations. Bull. Soc. Math. France Suppl. Mém., 1976, 46, 181–188 [Supplément au Bull. Soc. Math. France, 1976, 104(2)].

    MathSciNet  MATH  Google Scholar 

  10. Herman M. R. Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations. Thèse d'État, Univ. Paris-Sud, Orsay, 1976.

    Google Scholar 

  11. Herman M. R. Mesure de Lebesgue et nombre de rotation. In: Geometry and Topology. Proc. III Latin Amer. School of Math. (Rio de Janeiro, 1976). Editors: J. Palis and M. do Carmo. Berlin: Springer, 1977, 271–293. (Lecture Notes in Math., 597.)

    Chapter  Google Scholar 

  12. Herman M. R. Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations. Inst. Hautes Études Sci. Publ. Math., 1979, 49, 5–233.

    Article  MathSciNet  MATH  Google Scholar 

  13. Herman M. R. Résultats récents sur la conjugaison différentiable. In: Proceedings of the International Congress of Mathematicians (Helsinki, 1978), Vol. 2. Editor: O. Lehto. Helsinki: Acad. Sci. Fennica, 1980, 811–820.

    Google Scholar 

  14. Herman M. R. Sur les difféomorphismes du cercle de nombre de rotation de type constant. In: Conference on Harmonic Analysis in Honor of Antoni Zygmund (Chicago, 1981), Vol. II. Editors: W. Beckman, A. P. Calderón, R. Fefferman and P. W. Jones. Belmont: Wadsworth, 1983, 708–725.

    Google Scholar 

  15. Herman M. R. Simple proofs of local conjugacy theorems for diffeomorphisms of the circle with almost every rotation number. Bol. Soc. Brasil. Mat. (N. S.), 1985, 16(1), 45–83.

    Article  MathSciNet  MATH  Google Scholar 

  16. Herman M. R. Recent results and some open questions on Siegel's linearization theorem of germs of complex analytic diffeomorphisms of \(\mathbb{C}^n \) near a fixed point. In: VIIIth Intern. Congress on Mathematical Physics (Marseille, 1986). Editors: M. Mebkhout and R. Sénéor. Singapore: World Scientific, 1987, 138–184.

    Google Scholar 

  17. Katznelson Y., Ornstein D. S. The differentiability of the conjugation of certain diffeomorphisms of the circle. Ergod. Theory Dynam. Systems, 1989, 9(4), 643–680.

    MathSciNet  MATH  Google Scholar 

  18. Katznelson Y., Ornstein D. S. The absolute continuity of the conjugation of certain diffeomorphisms of the circle. Ergod. Theory Dynam. Systems, 1989, 9(4), 681–690.

    MathSciNet  Google Scholar 

  19. Khanin K. M., SinaĬ Ya. G. A new proof of M. Herman's theorem. Commun. Math. Phys., 1987, 112(1), 89–101.

    Article  MATH  Google Scholar 

  20. Pérez-Marco R. Sur la structure des germes holomorphes non linéarisables. C. R. Acad. Sci. Paris, Sér. I Math., 1991, 312(7), 533–536.

    MathSciNet  MATH  Google Scholar 

  21. Pérez-Marco R. Centralisateurs non dénombrables de germes de difféomorphismes holomorphes non linéarisables de (\(\mathbb{C}\), 0). C. R. Acad. Sci. Paris, Sér. I Math., 1991, 313(7), 461–464.

    MathSciNet  MATH  Google Scholar 

  22. Pérez-Marco R. Solution complète au problème de Siegel de linéarisation d'une application holomorphe au voisinage d'un point fixe (d'après J.-C. Yoccoz). In: Séminaire Bourbaki, 1991–92; Astérisque, 1992, 206, Exp. No. 753, 4, 273–310.

    Google Scholar 

  23. Pérez-Marco R. Sur les dynamiques holomorphes non linéarisables et une conjecture de V. I. Arnold. Ann. Sci. École Norm. Sup., Sér. 4, 1993, 26(5), 565–644.

    MATH  Google Scholar 

  24. Pérez-Marco R. Nonlinearizable holomorphic dynamics having an uncountable number of symmetries. Invent. Math., 1995, 119(1), 67–127.

    Article  MathSciNet  MATH  Google Scholar 

  25. Pérez-Marco R. Fixed points and circle maps. Acta Math., 1997, 179(2), 243–294.

    Article  MathSciNet  MATH  Google Scholar 

  26. Pérez-Marco R. Siegel disks with quasi-analytic boundary. Preprint, Université Paris-Sud.

    Google Scholar 

  27. Pérez-Marco R. Total convergence or general divergence in small divisors. Commun. Math. Phys., 2001, 223(3), 451–464.

    Article  MATH  Google Scholar 

  28. SinaĬ Ya. G., Khanin K. M. Smoothness of conjugacies of diffeomorphisms of the circle with rotations. Russian Math. Surveys, 1989, 44(1), 69–99.

    Article  MathSciNet  Google Scholar 

  29. Stark J. Smooth conjugacy and renormalisation for diffeomorphisms of the circle. Nonlinearity, 1988, 1(4), 541–575.

    Article  MathSciNet  MATH  Google Scholar 

  30. Yoccoz J.-C. Centralisateur d'un difféomorphisme du cercle dont le nombre de rotation est irrationnel. C. R. Acad. Sci. Paris, Sér. A–B, 1980, 291(9), A523–A526.

    MathSciNet  Google Scholar 

  31. Yoccoz J.-C.C1-conjugaison des difféomorphismes du cercle. In: Geometric Dynamics. Proc. Intern. Symp. at the IMPA (Rio de Janeiro, 1981). Editor: J. Palis, Jr. Berlin: Springer, 1983, 814–827. (Lecture Notes in Math., 1007.)

    Chapter  Google Scholar 

  32. Yoccoz J.-C. Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne. Ann. Sci. École Norm. Sup., Sér. 4, 1984, 17(3), 333–359.

    MathSciNet  MATH  Google Scholar 

  33. Yoccoz J.-C. Il n'y a pas de contre-exemple de Denjoy analytique. C. R. Acad. Sci. Paris, Sér. I Math., 1984, 298(7), 141–144.

    MathSciNet  MATH  Google Scholar 

  34. Yoccoz J.-C. Centralisateurs et conjugaison différentiable des difféomorphismes du cercle. Thèse d'État, Univ. Paris-Sud, Orsay, 1985.

    Google Scholar 

  35. Yoccoz J.-C. Linéarisation des germes de difféomorphismes holomorphes de (\(\mathbb{C}\), 0). C. R. Acad. Sci. Paris, Sér. I Math., 1988, 306(1), 55–58.

    MathSciNet  MATH  Google Scholar 

  36. Yoccoz J.-C. Théorème de Siegel, nombres de Bruno et polynômes quadratiques. In: Petits Diviseurs en Dimension 1. Astérisque, 1995, 231, 3–88.

    MathSciNet  Google Scholar 

  37. Yoccoz J.-C. Centralisateurs et conjugaison différentiable des difféomorphismes du cercle. In: Petits Diviseurs en Dimension 1. Astérisque, 1995, 231, 89–242.

    MathSciNet  Google Scholar 

1972-21 — M. B. Sevryuk

  1. Adrianova L. Ya. On reducibility of systems of n linear differential equations with quasi-periodic coefficients. Vestnik Leningrad. Univ., Ser. Mat., Mekh., Astron., 1962, 7(2), 14–24 (in Russian).

    MathSciNet  Google Scholar 

  2. Arnold V. I. Small denominators and problems of stability of motion in classical and celestial mechanics. Russian Math. Surveys, 1963, 18(6), 85–191 (see Ch. VI, § 2, no 5).

    Article  Google Scholar 

  3. Arnold V. I. Geometrical Methods in the Theory of Ordinary Differential Equations, 2nd edition. New York: Springer, 1988, § 26. (Grundlehren der Mathematischen Wissenschaften, 250.) [The Russian original 1978.]

    Google Scholar 

  4. Bogolyubov N. N., Mitropol'skiĬ Yu. A., SamoĬlenko A. M. Methods of Accelerated Convergence in Nonlinear Mechanics. New York: Springer, 1976, Ch. V. [The Russian original 1969.]

    MATH  Google Scholar 

  5. Broer H. W., Huitema G. B., Sevryuk M. B. Quasi-Periodic Motions in Families of Dynamical Systems: Order amidst Chaos. Berlin: Springer, 1996, Sect. 1.5. (Lecture Notes in Math., 1645.)

    Google Scholar 

  6. BronshteĬn I. U., CherniĬ V. F. Linear extensions satisfying the Perron condition. I; II. Differ. Equations, 1978, 14(10), 1234–1243; 1980, 16(2), 123–128.

    Google Scholar 

  7. Bylov B. F., Vinograd R. E., Grobman D. M., NemytskiĬ V. V. The Theory of Lyapunov Exponents and Its Applications to Stability Problems. Moscow: Nauka, 1966, Ch. VII (in Russian).

    Google Scholar 

  8. Bylov B. F., Vinograd R. E., Lin V. Ya., LokutsievskiĬ O. V. On topological obstacles to block diagonalization for some exponentially split almost periodic systems. Preprint of the Moscow Institute for Applied Mathematics, the USSR Academy of Sciences, 1977, № 58 (in Russian).

    Google Scholar 

  9. Bylov B. F., Vinograd R. E., Lin V. Ya., LokutsievskiĬ O. V. On topological reasons for anomalous behavior of some almost periodic systems. In: Problems of Asymptotic Theory of Nonlinear Oscillations. Editors: N. N. Bogolyubov, A. Yu. Ishlinskiĭ, V. S. Korolyuk, O. B. Lykova, A. M. Samoĭlenko and A. N. Sharkovskiĭ. Kiev: Naukova Dumka, 1977, 54–61 (in Russian).

    Google Scholar 

  10. Dinaburg E. I., SinaĬ Ya. G. On the one-dimensional Schrödinger equation with a quasi-periodic potential. Funct. Anal. Appl., 1975, 9(4), 279–289.

    Article  MATH  Google Scholar 

  11. Eliasson L. H. Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation. Commun. Math. Phys., 1992, 146(3), 447–482.

    Article  MathSciNet  MATH  Google Scholar 

  12. Eliasson L. H. Reducibility and point spectrum for linear quasi-periodic skew-products. In: Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998). Doc. Math., 1998, Extra Vol. II, 779–787 (electronic).

    MathSciNet  Google Scholar 

  13. Eliasson L. H. On the discrete one-dimensional quasi-periodic Schrödinger equation and other smooth quasi-periodic skew products. In: Hamiltonian Systems with Three or More Degrees of Freedom (S'Agaró, 1995). Editor: C. Simó. Dordrecht: Kluwer Acad. Publ., 1999, 55–61. (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 533.)

    Google Scholar 

  14. Eliasson L. H. Almost reducibility of linear quasi-periodic systems. In: Smooth Ergodic Theory and Its Applications. Proc. AMS Summer Research Inst. (Seattle, WA, 1999). Editors: A. B. Katok, R. de la Llave, Ya. B. Pesin and H. Weiss. Providence, RI: Amer. Math. Soc., 2001, 679–705. (Proc. Symposia Pure Math., 69.)

    Google Scholar 

  15. Gel'man A. E. On reducibility of a certain class of systems of differential equations with quasi-periodic coefficients. Dokl. Akad. Nauk SSSR, 1957, 116(4), 535–537 (in Russian).

    MathSciNet  MATH  Google Scholar 

  16. Herman M. R. Construction d'un difféomorphisme minimal d'entropie topologique non nulle. Ergod. Theory Dynam. Systems, 1981, 1(1), 65–76.

    MathSciNet  MATH  Google Scholar 

  17. Herman M. R. Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème d'Arnold et de Moser sur le tore de dimension 2. Comment. Math. Helvetici, 1983, 58(3), 453–502.

    Article  MathSciNet  MATH  Google Scholar 

  18. Johnson R. A., Sell G. R. Smoothness of spectral subbundles and reducibility of quasi-periodic linear differential systems. J. Differ. Equations, 1981, 41(2), 262–288.

    Article  MathSciNet  MATH  Google Scholar 

  19. Jorba À. Numerical computation of the normal behaviour of invariant curves of n-dimensional maps. Nonlinearity, 2001, 14(5), 943–976.

    Article  MathSciNet  MATH  Google Scholar 

  20. Jorba À., Ramírez-Ros R., Villanueva J. Effective reducibility of quasiperiodic linear equations close to constant coefficients. SIAM J. Math. Anal., 1997, 28(1), 178–188.

    Article  MathSciNet  MATH  Google Scholar 

  21. Jorba À., Simó C. On the reducibility of linear differential equations with quasiperiodic coefficients. J. Differ. Equations, 1992, 98(1), 111–124.

    Article  MATH  Google Scholar 

  22. Jorba À., Simó C. On quasiperiodic perturbations of elliptic equilibrium points. SIAM J. Math. Anal., 1996, 27(6), 1704–1737.

    Article  MathSciNet  MATH  Google Scholar 

  23. Krikorian R. Réductibilité presque partout des systèmes quasi périodiques analytiques dans le cas SO(3). C. R. Acad. Sci. Paris, Sér. I Math., 1995, 321(8), 1039–1044.

    MathSciNet  MATH  Google Scholar 

  24. Krikorian R.C0-densité globale des systèmes produits-croisés sur le cercle réductibles. Ergod. Theory Dynam. Systems, 1999, 19(1), 61–100.

    Article  MathSciNet  MATH  Google Scholar 

  25. Krikorian R. Réductibilité des Systémes Produits-Croisés à Valeurs dans des Groupes Compacts. Paris: Soc. Math. France, 1999. (Astérisque, 259.)

    MATH  Google Scholar 

  26. Krikorian R. Réductibilité presque partout des flots fibrés quasi-périodiques à valeurs dans des groupes compacts. Ann. Sci. École Norm. Sup., Sér. 4, 1999, 32(2), 187–240.

    MathSciNet  MATH  Google Scholar 

  27. Kuksin S. B. An infinitesimal Liouville-Arnold theorem as a criterion of reducibility for variational Hamiltonian equations. Chaos, Solitons & Fractals, 1992, 2(3), 259–269.

    Article  MathSciNet  MATH  Google Scholar 

  28. Millionshchikov V. M. A proof of the existence of non-regular systems of linear differential equations with quasi-periodic coefficients. Differ. Uravneniya, 1969, 5(11), 1979–1983 (in Russian, for the English translation see Differ. Equations).

    Google Scholar 

  29. Millionshchikov V. M. On typicality of almost reducible systems with almost periodic coefficients. Differ. Equations, 1978, 14(4), 448–450.

    MATH  Google Scholar