Chaos, Catastrophe, Bifurcation and Disaggregation in Locational Models


Hopf Bifurcation Facility Location Flow Line Catastrophe Theory Employment Share 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, P. M; Sanglier, M. (1979). "A dynamic model of growth in a central place system." Geographical Analysis, Vol 11, pp. 226–272.Google Scholar
  2. Andersson, A. E.; Kuenne, R. E. (1986). "Regional economic dynamics." in Handbook of Regional and Urban Economics, Vol. I, (P. Nijkamp-Editor), Elsevier Science Publishers B.V., Amsterdam, Netherlands.Google Scholar
  3. Bazarraa, M. S.; Shetty, C. M. (1979). Nonlinear Programming: Theory and Algorithms, John Wiley, New York, New York.Google Scholar
  4. Belenky, A. S. (1998). Operations Research in Transportation Systems, Kluwer Acadmic Publishers, Norwell, Massaschusetts.Google Scholar
  5. Bertuglia, C. S.; Leonardi, G.; Occelli, S.; Rabino, G. A.; Tadei, R.; Wilson, A. G.—Editors (1987). Urban Systems: Contemporary Approaches to Modelling, Croom Helm, Beckenham, United Kingdom.Google Scholar
  6. Brown, S. (1992). "The wheel of retail gravitation." Environment and Planning A, Vol. 24, pp. 1409–1429.Google Scholar
  7. Chan, Y. (2000). Location Theory and Decision Analysis, Thomson/South-Western, Cincinnati, Ohio.Google Scholar
  8. Chan, Y.; Yi, P. (1987). "Bifurcation and disaggregation in urban/regional spatial modelling: a technical note." European Journal of Operational Research, Vol. 30, pp. 321–326.CrossRefGoogle Scholar
  9. Clarke, M; Wilson, A. G. (1983). "The dynamics of urban spatial structure: problems and progress." Journal of Regional Science, Vol. 23, pp. 1–18.Google Scholar
  10. Dendrinos, D. S.; Sonis, M. (1990). Chaos and Socio-Spatial Dynamics, Springer-Verlag, New York, New York.Google Scholar
  11. Dendrinos, D. S.; Mulally, H. (1985). Urban Evolution: Studies in the Mathematical Ecology of Cities, Oxford University Press, Oxford, United Kingdom.Google Scholar
  12. Eaton, B. C; Lipsey, R. G. (1975). "The non-uniqueness of equilibrium in Loschan location model." The American Economic Review, Vol. 66, pp. 77–93.Google Scholar
  13. Feichtinger, G. (1996). "Chaos theory in Operations Research." International Transactions in Operations Research, Vol 3, pp. 23–36.CrossRefMATHGoogle Scholar
  14. Fischer, M. M.; Nijkamp, P.; Papageorgiou, Y. Y.—Editors (1990). Spatial Choices and Processes, North Holland/Elsevier Science Publishers B.V., Amsterdam, Netherlands.Google Scholar
  15. Golan, A.; Vogel, S. J. (1998). "Estimation of non-stationary social accouting matrix coefficints with supply-side information." Working paper, Deparment of Economics, American University, Washingon, D.C.Google Scholar
  16. Hakimi, S. L. (1990). "Locations with spatial interactions: competitive locations and games." in Discrete Location Theory (P. B. Mirchandani and R. L. Francis-Editors), Wiley-Interscience, New York, New York.Google Scholar
  17. Hof, J.; Bevers, M. (1998). Spatial Optimization for Managed Ecosystems, Columbia University Press, New York, New York.Google Scholar
  18. Iooss, G.; Joseph, D. D. (1990). Elementary Stability and Bifurcation Theory, Second Edition, Springer-Verlag, New York, New York.Google Scholar
  19. Lorenz, E.N. (1983). "Deterministic nonperiodic flow." Journal of the Atmospheric Sciences, Vol. 82, No. 2, pp. 130–141.Google Scholar
  20. Lorenz, H.W. (1993). Nonlinear Dynamical Economics and Chaotic Motion, Second Edition, Springer-Verlag, Berlin, Germany.Google Scholar
  21. Manheim, M. (1984). Fundamentals of Transportation Systems Analysis — Volume 1: Basic Concepts, MIT Press, Cambridge, Massachusetts.Google Scholar
  22. May, R. (1976). "Simple mathematical models with very complicated dynamics." Nature, Vol 261, pp. 459–467.CrossRefGoogle Scholar
  23. Miyao, T. (1987). "Dynamic urban models." chapter 22 in Handbook of Regional and Urban Economics, Vol II (E S. Mills—Editor), Elsevier Science Publishers B.V., Amsterdam, Netherlands.Google Scholar
  24. Moon, F. C. (1992). Chaotic and Fractal Dynamics, Wiley-Interscience, New York, New York.Google Scholar
  25. Nijkamp, P.; Reggiani, A. (1992). Interaction, Evolution and Chaos in Space, Springer-Verlag, Berlin, Germany.Google Scholar
  26. Nijkamp, P.; Reggiani, P. (1993). "Stability and complexity in spatial Networks." Discussion paper TI93-249, Tinbergen Institute, Amsterdam-Rotterdam, the Netherlands.Google Scholar
  27. Noble, B. (1969). Applied Linear Algebra, Prentice Hall, Englewood, New Jersey.Google Scholar
  28. Puu, T. (1997). Mathematical Location and Land Use Theory: An Introduction, Springer-Verlag, Berlin, Germany.Google Scholar
  29. Sen, A.; Smith, T. (1995). Gravity Model of Spatial Interaction Behavior, Springer-Verlag, Berlin, Germany.Google Scholar
  30. Silberberg, E. (1990). The Structure of Economics: A Mathematical Analysis, Second Edition, McGraw-Hill, New York, New York.Google Scholar
  31. Smith, B. A. (1996). Private communication.Google Scholar
  32. Upton, G. J. G.; Fingleton, B. (1989). Spatial Data Analysis by Example: Categorical and Directional Data—Volume 2, Wiley, Chichester, United Kingdom.Google Scholar
  33. Webber, M. (1984). Prediction, Explanation, and Planning: the Lowry Model, Research in Planning and Design, Volume 11, Pion, London, United Kingdom.Google Scholar
  34. Wilson, A. G. (1981). Catastrophe theory and bifurcation: applications to urban and regional systems, Croon Helm, Beckenham, United Kingdom; and University of California Press, Berkeley, California.Google Scholar
  35. Wong, C. K.; Wong, S. C; Tong, C. O. (1998). "A new methodology for calibrating the Lowry Model." Journal of Urban Planning and Development, Vol. 124, No. 2, pp. 72–91.CrossRefGoogle Scholar
  36. Yi, P.; Chan, Y. (1988). "Bifurcation and disaggregation in Lowry-Garin derivative models: theory, calibration, and case study." Environment and Planning A, Vol. 20, pp. 1253–1267.Google Scholar
  37. Yi, P. (1986). "Infrastructure Management: a Bifurcation Model in Urban Regional Planning." Master's thesis, Department of Civil and Environmental Engineering, Washington State University, Pullman, Washington.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations