FE ultimate load analyses of pile-supported pipelines - tackling uncertainty in a real design problem

  • Hermann Lehar
  • Gert Niederwanger
  • Günter Hofstetter


This study addresses the prediction of the behavior of pile-supported buried pipelines when they are considered as shell structures. Results, obtained on the basis of the numerical model are compared with experimental results, conducted both in the laboratory and on-site. Special attention is paid to the scatter of geometrical, material and loading parameters. The experimental and numerical investigations served as the basis for the development of a design table for pile-supported buried pipelines.


Ductile Cast Iron Circumferential Strain Grey Cast Iron Sheet Pile Ultimate Limit State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Augusti G., Baratta A., Casciati F. (1984), Probabilistic Methods in Structural Engineering, Chapman and Hall Ltd., London, New YorkGoogle Scholar
  2. [2]
    Bolotin V.V. (1969), Statistical Methods in Structural Mechanics, Holden-Day, Inc., San Francisco, Cambridge, London, AmsterdamGoogle Scholar
  3. [3]
    Brazier L.G. (1927), On the Flexure of Thin Cylindrical Shells and Other ‘Thin’ Sections, Proceedings of the Royal Society, London, Series A, vol. 116:104–114Google Scholar
  4. [4]
    Chen Y., Fuchs W., Netzer W. (1994), The Reliability of Buried Piping (Calculation of Safety Coefficients for Standard Önorm B5012 (in German), Ö sterreichische Wasser-und Abfallwirtschaft, Jahrgang 46, Heft 11/12: 280–300Google Scholar
  5. [5]
    Flügge W. (1967), Stresses in Shells, Fourth Printing, Springer-Verlag, Berlin, Heidelberg New YorkGoogle Scholar
  6. [6]
    Freudenthal A.M. (1947), Safety of Structures, Trans. ASCE 112:125–180Google Scholar
  7. [7]
    Henzinger J. (1993), Pfahlbelastung bei der Gründung von Gussrohrleitungen auf Pfählen, geotechnik 16/4:199–201Google Scholar
  8. [8]
    Hetényi M.I (1946), Beams on elastic foundation; Theory with Applications in the Fields of Civil and Mechanical Engineering, The University of Michigan Press, Ann Arbor, Ninth printing, 1971Google Scholar
  9. [9]
    Hjelm H.E. (1993), Elastoplasticity of Grey Cast Iron, FE-Algorithms and Biaxial Experiments. Ph.D. Thesis, Chalmers University of Technology, Division of Solid Mechanics, SwedenGoogle Scholar
  10. [10]
    Hjelm H.E. (1994), Yield Surface for Grey Cast Iron under Biaxial Stress, Journal of Engineering Materials and Technology 116:148–154Google Scholar
  11. [11]
    Hibbitt, Karlsson & Sorensen (1995), ABAQUS User’s Manual, Version 5.5, HKS, Inc., Pawtucket, RI., USAGoogle Scholar
  12. [12]
    Hibbitt, Karlsson & Sorensen (1995), ABAQUS Example Problems Manual, Version 5.5, HKS, Inc., Pawtucket, RI., USAGoogle Scholar
  13. [13]
    Lehar H., Hofstetter G. (1997), Design table for pile-supported pipelines made by TRM AG. Research Report, Institute for Structural Analysis and Strength of Materials, University of Innsbruck, Innsbruck (in German)Google Scholar
  14. [14]
    Mang F. (1966), Berechnung und Konstruktion ringversteifter Druckrohrleitungen, Springer, Berlin, Heidelberg New YorkGoogle Scholar
  15. [15]
    Mohareb M., Alexander S.D.B., Kulak G.L., Murray D.W. (1993), Laboratory testing of line pipe to determine deformational behavior, Proc. 12th Int. Conf. on OMAE, Vol. V — Pipeline Technology, ASME: 109–114Google Scholar
  16. [16]
    Murray David W. (1997), Local buckling, strain localization, wrinkling and postbuckling response of line pipe, Engineering Structures, Vol. 19, No. 5:360–371Google Scholar
  17. [17]
    Reusch D. (1961), Beitrag zur Berechnung eingeerdeter Rohre, Bauingenieur, 36Google Scholar
  18. [18]
    Schuëller G.I. (1981), Einführung in die Sicherheit und Zuverlässigkeit von Tragwerken, W. Ernst & Sohn BerlinGoogle Scholar
  19. [19]
    Joint Committee on Structural Safety (1976), Common unified rules for different types of construction and material, CEB Bulletin d’Information, 116EGoogle Scholar
  20. [20]
    Arbeitsblatt A-127 (1988), Richtlinie für die statische Berechnung von Entwässerungskanälen und-leitungen, Regelwerk der Abwassertechnischen Vereinigung (ATV), Gesellschaft zur Förderung der Abwassertechnik (GFA), St. Augustin, 2. AuflageGoogle Scholar
  21. [21]
    DIN EN 10002-1 (1990), Metallic materials; Tensile Testing; Part 1: Method of testing (at ambient temperature), CEN (European committee for standardization), BrusselsGoogle Scholar
  22. [22]
    DIN 50106 (1978), Testing of materials; Compression test, DIN (German institute for standardization), BerlinGoogle Scholar
  23. [23]
    DIN 18800 (1990), Teil 1: Stahlbauten-Bemessung und Konstruktion; DIN (Deutsches Institut für Normung), BerlinGoogle Scholar
  24. [24]
    EN 598 (1994), Ductile iron pipes, fittings, accessories and their joints for sewerage application — requirements and test methods, Ö Osterreichisches Normungsinstitut, WienGoogle Scholar
  25. [25]
    EN 545 (2003), Ductile iron pipes, fittings, accessories and their joints for water conduits-requirements and test methods, Österreichisches Normungsinstitut, WienGoogle Scholar
  26. [26]
    Önorm B 5012 (1990): Statische Berechnung erdverlegter Rohrleitungen im Siedlungs-und Industriewasserbau, Österreichisches Normungsinstitut, WienGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Hermann Lehar
    • 1
  • Gert Niederwanger
    • 1
  • Günter Hofstetter
    • 1
  1. 1.Institut für Baustatik, Festigkeitslehre und TragwerkslehreUniversität InnsbruckAustria

Personalised recommendations