Difficulties related to numerical predictions of deformations

  • Ivo Herle


Boundary Value Problem Triaxial Test Numerical Prediction Stress Path Surface Settlement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. Belytschko. On difficulty levels in non linear finite element analysis of solids. IACM Expressions, (2):6–8, 1996.Google Scholar
  2. [2]
    G. Bianchini, P. Puccini, and A. Saada. Test results. In Saada and Bianchini, editors, Constitutive Equations for Granular Non-Cohesive Soils, pages 89–97. Balkema, 1988.Google Scholar
  3. [3]
    J. Burland. “Small is beautiful” — the stiffness of soils at small strains. Canadian Geotechnical Journal, 26:499–516, 1989.CrossRefGoogle Scholar
  4. [4]
    M. Doleųzalová, V. Zemanová, and J. Danko. An approach for selecting rock mass constitutive model for surface settlement prediction. In Int. Conf. on Soil-Structure Interaction in Urban Civil Engineering, volume 1, pages 49–65, Darmstadt, 1998.Google Scholar
  5. [5]
    G. Gudehus. A comprehensive constitutive equation for granular materials. Soils and Foundations, 36(1):1–12, 1996.Google Scholar
  6. [6]
    G. Gudehus, F. Darve, and I. Vardoulakis, editors. Results of the International Workshop on Constitutive Relations for Soils, Grenoble, 1984. Balkema.Google Scholar
  7. [7]
    I. Herle, T. Doanh, and W. Wu. Comparison of hypoplastic and elastoplastic modelling of undrained triaxial tests on loose sand. In D. Kolymbas, editor, Constitutive Modelling of Granular Materials, pages 333–351, Horton, 2000. Springer.Google Scholar
  8. [8]
    I. Herle and P.-M. Mayer. Verformungsberechnung einer Unterwasserbetonbaugrube auf der Grundlage hypoplastisch ermittelter Parameter des Berliner Sandes. Bautechnik, 76(1):34–48, 1999.Google Scholar
  9. [9]
    I. Herle and K. Nübel. Hypoplastic description of the interface behaviour. In G. Pande, S. Pietruszczak, and H. Schweiger, editors, Int. Symp. on Numerical Models in Geomechanics, NUMOG VII, pages 53–58, Graz, 1999. A.A.Balkema.Google Scholar
  10. [10]
    I. Herle and J. Tejchman. Effect of grain size and pressure level on bearing capacity of footings on sand. In A. Asaoka, T. Adachi, and F. Oka, editors, IS-Nagoya’97: Deformation and Progressive Failure in Geomechanics, pages 781–786. Pergamon, 1997.Google Scholar
  11. [11]
    S. Imposimato and R. Nova. An investigation on the uniqueness of the incremental response of elastoplastic models for virgin sand. Mechanics of Cohesive-Frictional Materials, 3:65–87, 1998.CrossRefGoogle Scholar
  12. [12]
    D. Kolymbas. An outline of hypoplasticity. Archive of Applied Mechanics, 61:143–151, 1991.MATHGoogle Scholar
  13. [13]
    D. Kolymbas. The misery of constitutive modelling. In D. Kolymbas, editor, Constitutive Modelling of Granular Materials, pages 11–24, Horton, 2000. Springer.Google Scholar
  14. [14]
    T. Lambe. Stress path method. Journal of the Soil Mechanics and Foundations Division ASCE, 93(SM6):309–331, 1967.Google Scholar
  15. [15]
    T. Lambe. Predictions in soil eingineering. Géotechnique, 23(2):149–202, 1973.Google Scholar
  16. [16]
    I. Lydon. Behaviour problems. Ground Engineering, 33(11):31, 2000.Google Scholar
  17. [17]
    M. Mähr. Berechnung primärer Spannungsfelder nach der Methode der Finiten Elemente und mit dem hypoplastischen Stoffgesetz. IGT, University of Innsbruck, 2000. Diploma Thesis.Google Scholar
  18. [18]
    D. Muir Wood. The role of models in civil engineering. In D. Kolymbas, editor, Constitutive Modelling of Granular Materials, pages 37–55, Horton, 2000. Springer.Google Scholar
  19. [19]
    K. Nübel, P.-M. Mayer, and R. Cudmani. Einfluß der Ausgangsspannungen im Boden auf die Berechnung von Wandverschiebungen tiefer Baugruben in Berlin. In Ohde-Kolloquium, pages 183–207. TU Dresden, 1997.Google Scholar
  20. [20]
    R. Peck. Advantages and limitations of the observational method in applied soil mechanics. Géotechnique, 19(2):171–187, 1969.MathSciNetGoogle Scholar
  21. [21]
    I. Prigogine and I. Stengers. Order Out of Chaos. Bantam Books, New York, 1983.Google Scholar
  22. [22]
    K. Roscoe. The influence of strains in soil mechanics. Géotechnique, 20(2):129–170, 1970.Google Scholar
  23. [23]
    A. Saada and G. Bianchini, editors. Constitutive Equations for Granular Non-Cohesive Soils, Cleveland, 1988. Balkema.Google Scholar
  24. [24]
    H. F. Schweiger. Results from two geotechnical benchmark problems. In A. Cividini, editor, Proc. 4th European Conf. Numerical Methods in Geotechnical Engineering, pages 645–654. Springer, 1998.Google Scholar
  25. [25]
    H. F. Schweiger. Comparison of finite element results obtained for a geotechnical benchmark problem. In C. Desai, T. Kundu, S. Harpalani, D. Contractor, and J. Kemeny, editors, Computer methods and advances in geomechanics — Proc. of the 10th International Conference, Tucson, 2001. A.A.Balkema.Google Scholar
  26. [26]
    B. Simpson, N. O’Riordan, and D. Croft. A computer model for the analysis of ground movements in London Clay. Géotechnique, 29(2):149–175, 1979.Google Scholar
  27. [27]
    F. Tatsuoka, S. Goto, T. Tanaka, K. Tani, and Y. Kimura. Particle size effects on bearing capacity of footings on granular material. In A. Asaoka, T. Adachi, and F. Oka, editors, IS-Nagoya’97: Deformation and Progressive Failure in Geomechanics, pages 133–138. Pergamon, 1997.Google Scholar
  28. [28]
    F. Tatsuoka, R. Jardine, D. Lo Presti, H. Di Benedetto, and T. Kodaka. Theme lecture: Characterising the pre-failure deformation properties of geomaterials. In Proc. XIV ICSMFE, Hamburg, volume 4, pages 2129–2164. A.A.Balkema, 1999.Google Scholar
  29. [29]
    F. Tatsuoka, M. Siddiquee, T. Yoshida, C. Park, Y. Kamegai, S. Goto, and Y. Kohata. Testing methods and results of element tests and testing conditions of plane strain model bearing capacity tests using air-dried dense Silver Leighton Buzzard sand. Report prepared for class-a prediction of the bearing capacity performance of model surface footing on sand under plane strain conditions, Institute of Industrial Science, University of Tokyo, 1994.Google Scholar
  30. [30]
    J. Tejchman and I. Herle. A “class A” prediction of the bearing capacity of plane strain footings on sand. Soils and Foundations, 39(5):47–60, 1999.Google Scholar
  31. [31]
    G. Viggiani and C. Tamagnini. Ground movements around excavations in granular soils: a few remarks on the influence of the constitutive assumptions on FE predictions. Mechanics of Cohesive-Frictional Materials, 5:399–423, 2000.CrossRefGoogle Scholar
  32. [32]
    P.-A. von Wolffersdorff. A hypoplastic relation for granular materials with a predefined limit state surface. Mechanics of Cohesive-Frictional Materials, 1:251–271, 1996.CrossRefGoogle Scholar
  33. [33]
    P.-A. von Wolffersdorff. Verformungsprognosen für Stützkonstruktionen. Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe, 1997. Heft 141.Google Scholar
  34. [34]
    C. P. Wroth. The predicted performance of soft clay under a trial embankment loading based on the Cam-clay model. In G. Gudehus, editor, Finite Elements in Geomechanics, pages 191–208. Wiley, 1977.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ivo Herle
    • 1
  1. 1.Institut für GeotechnikTechnische UniversitätDresdenGermany

Personalised recommendations