Multi-parameter models: rules and computational methods for combining uncertainties

  • Thomas Fetz


This paper is devoted to the construction of sets of joint probability measures for the case that the marginal sets of probability measures are generated by random sets. Different conditions on the choice of the weights of the joint focal sets and on the probability measures on these sets lead to different types of independence such as strong independence, random set independence, fuzzy set independence and unknown interaction. As an application the upper probabilities of failure of a beam bedded on two springs are computed.


Probability Measure Fuzzy Number Dirac Measure Evidence Theory Possibility Measure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    I. Couso, S. Moral, and P. Walley. Examples of independence for imprecise probabilities. In G. de Cooman, G. Cozman, S. Moral, and P. Walley, editors, Proceedings of the first international symposium on imprecise probabilities and their applications, pages 121–130, Ghent, 1999. Universiteit Gent.Google Scholar
  2. [2]
    G. De Cooman. Possibility theory III: possibilistic independence. International Journal of General Systems, 25:353–371, 1997.MATHGoogle Scholar
  3. [3]
    A. P. Dempster. Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat., 38:325–339, 1967.MathSciNetMATHGoogle Scholar
  4. [4]
    Th. Fetz. Finite element method with fuzzy parameters. In Troch I. and Breitenecker F., editors, Proceedings IMACS Symposium on Mathematical Modelling, volume 11, pages 81–86, Vienna, 1997. ARGESIM Report.Google Scholar
  5. [5]
    Th. Fetz. Sets of joint probability measures generated by weighted marginal focal sets. In G. de Cooman, T. Fine, T. Seidenfeld (Eds.), ISIPTA’01, Proceedings of the Second Symposium on Imprecise Probabilities and Their Applications., pages 171–178, Maastricht, 2001. Shaker Publ. BV.Google Scholar
  6. [6]
    Th. Fetz. Mengen von gemeinsamen Wahrscheinlichkeitsmaßen erzeugt von zufälligen Mengen, Dissertation, Universität Innsbruck, 2003. Multi-parameter models 99Google Scholar
  7. [7]
    Th. Fetz, M. Hofmeister, G. Hunger, J. Jäger, H. Lessman, M. Oberguggenberger, A. Rieser, and R. F. Stark. Tunnelberechnung — Fuzzy? Bauingenieur, 72:33–40, 1997.Google Scholar
  8. [8]
    Th. Fetz, J. Jäger, D. Köll, G. Krenn, H. Lessmann, M. Oberguggenberger, and R. Stark. Fuzzy models in geotechnical engineering and construction management. In this volume.Google Scholar
  9. [9]
    Th. Fetz and M. Oberguggenberger. Propagation of uncertainty through multivariate functions in the framework of sets of probability measures. Reliability Engineering and Systems Safety, 85:73–87, 2004.Google Scholar
  10. [10]
    Th. Fetz, M. Oberguggenberger, and S. Pittschmann. Applications of possibility and evidence theory in civil engineering. Internat. J. Uncertain. Fuzziness Knowledge-Based Systems, 8(3):295–309, 2000.MathSciNetGoogle Scholar
  11. [11]
    R. Hammer, M. Hocks, U. Kulisch, and D. Ratz. C++ Toolbox for Verified Computing. Springer, Berlin, 1995.Google Scholar
  12. [12]
    B. Möller. Fuzzy-Modellierung in der Baustatik. Bauingenieur, 72:75–84, 1997.Google Scholar
  13. [13]
    B. Möller, M. Beer, W. Graf, and A. Hoffmann. Possibility theory based safety assessment. Computer-Aided Civil and Infrastructure Engineering, 14:81–91, 1999.Google Scholar
  14. [14]
    R. L. Muhanna and R. L. Mullen. Formulation of fuzzy finite-element methods for solid mechanics problems. Computer Aided Civil and Infrastructure Engineering, 14:107–117, 1999.Google Scholar
  15. [15]
    F. Tonon and A. Bernardini. A random set approach to the optimization of uncertain structures. Comput. Struct., 68(6):583–600, 1998.CrossRefMathSciNetGoogle Scholar
  16. [16]
    F. Tonon and A. Bernardini. Multiobjective optimization of uncerta in structures through fuzzy set and random set theory. Computer-Aided Civil and Infrastructure Engineering, 14:119–140, 1999.CrossRefGoogle Scholar
  17. [17]
    P. Walley. Statistical reasoning with imprecise probabilities. Chapman and Hall, London, 1991.Google Scholar
  18. [18]
    Z. Wang and G. J. Klir. Fuzzy Measure Theory. Plenum Press, New York, 1992.Google Scholar
  19. [19]
    L. A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1:3–28, 1978.CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Thomas Fetz
    • 1
  1. 1.Institut für Technische Mathematik, Geometrie und BauinformatikUniversität InnsbruckAustria

Personalised recommendations