The mathematics of uncertainty: models, methods and interpretations

  • Michael Oberguggenberger


This article discusses various mathematical theories that have been put forth as tools for modelling uncertainty, among them probability, interval arithmetic, random sets, and fuzzy sets. After recalling the definitions, we stress their interpretations (semantics), axioms, interrelations as well as numerical procedures and demonstrate how the concepts are applied in practice.


Probability Measure Fuzzy Number Subjective Probability Interval Arithmetic Fuzzy Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Adeli, B. Möller (Eds.). Special Issue: Fuzzy Modeling. Vol. 14(2) of Computer Aided Civil and Infrastructure Engineering, 1999.Google Scholar
  2. [2]
    G. Auvinet, J. L. González. Three-dimensional reliability analysis of earth slopes. Computers and Geotechnics 26 (2000), 247–261.CrossRefGoogle Scholar
  3. [3]
    B. M. Ayyub (Ed.). Uncertainty Modeling and Analysis in Civil Engineering. CRC Press, Boca Raton 1998.Google Scholar
  4. [4]
    H. Bandemer. Ratschläge zum mathematischen Umgang mit Ungewißheit — Reasonable Computing. Teubner, Leipzig 1997.Google Scholar
  5. [5]
    H. Bandemer, S. Gottwald. Einführung in Fuzzy-Methoden. 4. Aufl., Akademie Verlag, Berlin 1993.Google Scholar
  6. [6]
    H. Bandemer, W. Näther. Fuzzy Data Analysis. Kluwer Acad. Publ., Dordrecht 1992.Google Scholar
  7. [7]
    A. Bárdossy, L. Duckstein. Fuzzy Rule-Based Modeling with Applications to Geophysical, Biological and Engineering Systems. CRC Press, Boca Raton 1995.Google Scholar
  8. [8]
    T. Bedford, R. Cooke. Probabilistic Risk Analysis. Cambridge University Press, Cambridge 2001.Google Scholar
  9. [9]
    A. Bernardini. Qualitative and quantitative measures in seismic damage assessment and forecasting of masonry buildings. In: A, Bernardini (Ed.). Seismic Damage to Masonry Buildings. A. A. Balkema, Rotterdam 1999, 169–177.Google Scholar
  10. [10]
    C. Bertoluzza, M.Á. Gil, D. A. Ralescu (Eds.). Statistical Modeling, Analysis and Management of Fuzzy Data. Physica-Verlag, Heidelberg 2002.Google Scholar
  11. [11]
    D. Blockley, I. Ferraris. Managing the quality of a project. In: Seguridad en Ingenieráa, Academia Nacional de Ingeniería, Editorial Dunken, Buenos Aires 2000, 69–89.Google Scholar
  12. [12]
    V. V. Bolotin. Statistical Methods in Structural Mechanics. Holden-Day, Inc., San Francisco, 1969.Google Scholar
  13. [13]
    J. J. Buckley, E. Eslami, T. Feuring. Fuzzy Mathematics in Economics and Engineering. Physica-Verlag, Heidelberg 2002.Google Scholar
  14. [14]
    G. Choquet. Theory of capacities. Annales de l’Institut Fourier 5 (1953/54), 131–295.MathSciNetGoogle Scholar
  15. [15]
    G. De Cooman, T. Fine, T. Seidenfeld (Eds.). ISIPTA’01, Proceedings of the Second International Symposium on Imprecise Probabilities and Their Applications. Shaker Publishing BV, Maastricht, 2001.Google Scholar
  16. [16]
    A. P. Dempster. Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics 38:325–339, 1967.MathSciNetMATHGoogle Scholar
  17. [17]
    D. Denneberg. Non-additive Measure and Integral. Kluwer Acad. Publ., Dordrecht 1994.Google Scholar
  18. [18]
    R. Diedrich. Entscheidungen bei Ungewißheit. Physica-Verlag, Heidelberg 1999.Google Scholar
  19. [19]
    O. Ditlevsen, N. J. Tarp-Johansen, H. Denver. Bayesian soil assessments combining prior with posterior censored samples. Computers and Geotechnics, 26 (2000), 187–198.CrossRefGoogle Scholar
  20. [20]
    D. Dubois, H. Prade. Possibility Theory. Plenum Press, New York, 1988.Google Scholar
  21. [21]
    D. Dubois, H. Prade, R. Sabbadin. Decision-theoretic foundations of qualitative possibility theory. European J. Operations Res. 128 (2001), 459–478.MathSciNetGoogle Scholar
  22. [22]
    D. Dubois, H. Prade, S. Sandri. On possibility/probability transformations. In: R. Lowen, M. Roubens (Eds.). Fuzzy Logic: State of the Art. Kluwer Academic Publishers, Dordrecht 1993, 103–112.Google Scholar
  23. [23]
    H. H. Einstein. Quantifying uncertain engineering geologic information. Felsbau, 19(5) (2001), 72–84.Google Scholar
  24. [24]
    F. Eisenführ, M. Weber. Rationales Entscheiden. 3rd Ed., Springer-Verlag, Berlin 1999.Google Scholar
  25. [25]
    I. Elishakoff (Ed.). Whys and Hows in Uncertainty Modelling: Probability, Fuzziness and Anti-Optimization. Springer-Verlag, Wien 1999.Google Scholar
  26. [26]
    I. Elishakoff. What may go wrong with probabilistic methods? In I. Elishakoff (Ed.). Whys and Hows in Uncertainty Modelling: Probability, Fuzziness and Anti-Optimization Springer-Verlag, Wien 1999, 265–283.Google Scholar
  27. [27]
    W. Fellin. Assessment of characteristic soil parameters and its implication in geotechnical design. In this volume.Google Scholar
  28. [28]
    S. Ferson, V. Kreinovich, L. Ginzburg, D. S. Myers, K. Sentz. Constructing probability boxes and Dempster-Shafer structures. SAND REPORT SAND 2002-4015, Sandia National Laboratories, Albuquerque, 2003.Google Scholar
  29. [29]
    Th. Fetz. Sets of joint probability measures generated by weighted marginal focal sets. In: G. De Cooman, T. Fine, T. Seidenfeld (Eds.). ISIPTA’01, Proceedings of the Second International Symposium on Imprecise Probabilities and Their Applications. Shaker Publishing BV, Maastricht, 2001, 171–178.Google Scholar
  30. [30]
    Th. Fetz. Multi-parameter models: rules and computational methods for combining uncertainties. In this volume.Google Scholar
  31. [31]
    Th. Fetz, J. Jäger, D. Köll, G. Krenn, H. Lessmann, M. Oberguggenberger, R. Stark. Fuzzy models in geotechnical engineering and construction management. In this volume.Google Scholar
  32. [32]
    Th. Fetz, M. Oberguggenberger. Propagation of uncertainty through multivariate functions in the framework of sets of probability measures. Reliability Engineering and Systems Safety, 85 (2004), 75–87.Google Scholar
  33. [33]
    T. L. Fine. Theories of Probability. An Examination of Foundations. Academic Press, New York 1973.Google Scholar
  34. [34]
    A. B. Gelman, J. S. Carlin, H. S. Stern, D. B. Rubin. Bayesian Data Analysis. Chapman & Hall/CRC, Boca Raton 1997.Google Scholar
  35. [35]
    A. Gheorghe, J.-P. Krause, R. Mock. Integration von Fuzzy-Logic für eine regionale Umweltrisiko-Analyse. Hochschulverlag an der ETH, Zürich 1996.Google Scholar
  36. [36]
    I. R. Goodman, H. T. Nguyen. Fuzziness and randomness. In: C. Bertoluzza, M.Á. Gil, D. A. Ralescu (Eds.), Statistical Modeling Analysis and Management of Fuzzy Data. Physica-Verlag, Heidelberg 2002, 3–21.Google Scholar
  37. [37]
    J. Goutsias, R. P. S. Mahler, H. T. Nguyen (Eds.). Random Sets. Theory and Applications. Springer-Verlag, New York 1997.Google Scholar
  38. [38]
    J. Hall, J. Lawry. Imprecise probabilities of engineering system failure from random and fuzzy set reliability analysis. In: G. De Cooman, T. Fine, T. Seidenfeld (Eds.). ISIPTA’01, Proceedings of the Second International Symposium on Imprecise Probabilities and Their Applications. Shaker Publishing BV, Maastricht, 2001, 195–204.Google Scholar
  39. [39]
    J. Hall, E. Rubio, M. Anderson. Random sets of probability measures in slope hydrology and stability analysis. Zeitschrift f. Angewandte Mathematik u. Mechanik, to appear.Google Scholar
  40. [40]
    P. R. Halmos. Measure Theory. Van Nostrand, New York 1950.Google Scholar
  41. [41]
    J. Hanisch, W. Struck. Charakteristischer Wert einer Boden-oder Materialeigenschaft aus Stichprobenergebnissen und zusätzlicher Information. Bautechnik 10 (1985), 338–348.Google Scholar
  42. [42]
    J. A. Hartigan. Bayes Theory. Springer-Verlag, New York 1983.Google Scholar
  43. [43]
    J. C. Helton, F. J. Davis. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. SAND REPORT SAND 2001-0417, Sandia National Laboratories, Albuquerque, 2002.Google Scholar
  44. [44]
    I. Herle. Difficulties related to numerical predictions of deformations. In this volume.Google Scholar
  45. [45]
    H. Hirsch. Interview by H. Hochner. In: ZIB3, Austrian Television, May 5, 2001.Google Scholar
  46. [46]
    P. J. Huber. Robust Statistics. John Wiley & Sons, New York 1981.Google Scholar
  47. [47]
    A. Kandel. Fuzzy Mathematical Techniques with Applications. Addison-Wesley, Reading, 1986.Google Scholar
  48. [48]
    O. Klingmüller, U. Bourgund. Sicherheit und Risiko im Konstruktiven Ingenieurbau. Verlag Vieweg, Braunschweig, 1992.Google Scholar
  49. [49]
    G. J. Klir, M. J. Wiermann. Uncertainty-Based Information. Elements of Generalized Information Theory. Physica-Verlag, Heidelberg 1998.Google Scholar
  50. [50]
    A. Kolmogoroff. Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer-Verlag, Berlin 1933.Google Scholar
  51. [51]
    V. Kreinovich. Random sets unify, explain, and aid known uncertainty methods in expert systems. In: J. Goutsias, R. P. S. Mahler, H. T. Nguyen (Eds.). Random Sets. Theory and Applications. Springer-Verlag, New York 1997.Google Scholar
  52. [52]
    E. Kriegler, H. Held. Global mean temperature projections for the 21st century using random sets. In: J.-M. Bernard, T. Seidenfeld, M. Zaffalon (Eds.). ISIPTA’03. Proceedings of the Third International Symposium on Imprecise Probabilities and Their Applications. Proceedings in Informatics 18, Carlton Scientific 2003.Google Scholar
  53. [53]
    H. Lehar, G. Niederwanger, G. Hofstetter. FE ultimate load analyses of pilesupported pipelines — tackling uncertainty in a real design problem. In this volume.Google Scholar
  54. [54]
    K. Lesny, A. Kisse, W. Richwien: Proof of foundation stability using a consistent failure model. In: R. Pöttler, H. Klapperich, H. F. Schweiger (Eds.). Probabilistics in GeoTechnics: Technical and Economic Risk Estimation. United Engineering Foundation, Verlag Glückauf, Essen, 2002, 95–103.Google Scholar
  55. [55]
    H. Lessmann, J. Mühlögger, M. Oberguggenberger. Netzplantechnik mit unscharfen Methoden. Bauingenieur 69 (1994) 469–478.Google Scholar
  56. [56]
    R.-J. Li, E. S. Lee. Analysis of fuzzy queues. Computers Math. Appl., 17 (1989) 1143–1147.MathSciNetGoogle Scholar
  57. [57]
    B. S. L. P. de Lima, N. F. F. Ebecken. A comparison of models for uncertainty analysis by the finite element method. Finite Elements in Analysis and Design, 34 (2000), 211–232.Google Scholar
  58. [58]
    M. Loève. Probability Theory II. 4th Ed., Springer-Verlag, New York 1978.Google Scholar
  59. [59]
    C. R. Manski. Partial Identification of Probability Distributions. Springer-Verlag, New York 2003.Google Scholar
  60. [60]
    M. A. Meyer, J. M. Booker. Eliciting and Analyzing Expert Judgement. SIAM, Philadelphia PA, 2001.Google Scholar
  61. [61]
    B. Möller. Fuzzy-Modellierung in der Baustatik. Bauingenieur, 72 (1997) 75–84.Google Scholar
  62. [62]
    B. Möller. Fuzzy randomness — a contribution to imprecise probability. Zeitschrift f. Angewandte Mathematik u. Mechanik, to appear.Google Scholar
  63. [63]
    P.-A. Monney. A Mathematical Theory for Statistical Evidence. Physica-Verlag, Heidelberg 2003.Google Scholar
  64. [64]
    A. Neumaier. Interval Methods for Systems of Equations. Cambridge University Press, Cambridge 1990.Google Scholar
  65. [65]
    A. Neumaier. Fuzzy modeling in terms of surprise. Fuzzy Sets and Systems 135, 21–38 (2003).CrossRefMathSciNetMATHGoogle Scholar
  66. [66]
    A. Neumaier. Clouds, fuzzy sets and probability intervals. Reliable Computing, 10 (2004), 249–272.CrossRefMathSciNetMATHGoogle Scholar
  67. [67]
    H. T. Nguyen, T. Wang. Belief functions and random sets. In: J. Goutsias, R. P. S. Mahler, H. T. Nguyen (Eds.). Random Sets. Theory and Applications. Springer-Verlag, New York 1997.Google Scholar
  68. [68]
    M. Oberguggenberger. Queueing models with fuzzy data in construction management. In this volume.Google Scholar
  69. [69]
    M. Oberguggenberger, W. Fellin. The fuzziness and sensitivity of failure probabilities. In this volume.Google Scholar
  70. [70]
    M. Oberguggenberger, F. Russo. Fuzzy, probabilistic and stochastic modelling of an elastically bedded beam. In this volume.Google Scholar
  71. [71]
    M. Oberguggenberger, G. I. Schuëller, K. Marti (Eds.). Special Issue: Fuzzy Sets, Imprecise Probability and Stochastics in Engineering. Zeitschrift f. Angewandte Mathematik u. Mechanik, to appear.Google Scholar
  72. [72]
    W. L. Oberkampf, J. C. Helton. Investigation of Evidence Theory for Engineering Applications. American Institute of Aeronautics and Astronautics, Reston VA, AIAA 2002-1569, Non-Deterministic Approaches Forum, Seattle, WA (2002).Google Scholar
  73. [73]
    W. L. Oberkampf, J. C. Helton, K. Sentz. Mathematical Representation of Uncertainty. American Institute of Aeronautics and Astronautics, Reston VA, AIAA 2001-1645, Non-Deterministic Approaches Forum,Seattle, WA (2001).Google Scholar
  74. [74]
    A. O’Hagan. Eliciting expert beliefs in substantial practical applications. The Statistician 47 (1998), 21–35.Google Scholar
  75. [75]
    A. Ostermann. Sensitivity analysis. In this volume.Google Scholar
  76. [76]
    K. Popper. The propensity interpretation of the calculus of probability, and the quantum theory. In: S. Körner ((Ed.), Observation and Interpretation, London 1957.Google Scholar
  77. [77]
    K. Popper. Logik der Forschung. 10. Aufl., J. C. B. Mohr (Paul Siebeck), Tübingen 1994.Google Scholar
  78. [78]
    R. Rackwitz. Reviewing probabilistic soils modelling. Computers and Geotechnics 26 (2000), 199–223CrossRefGoogle Scholar
  79. [79]
    T. J. Ross, J. M. Booker, W. J. Parkinson (Eds.). Fuzzy Logic and Probability Applications — Bridging the Gap. SIAM, Philadelphia PA, ASA, Alexandria VA, 2002.Google Scholar
  80. [80]
    L. J. Savage. The Foundations of Statistics. Wiley, New York 1954.Google Scholar
  81. [81]
    H. R. Schneider. Definition and determination of characteristic soil properties. In: Proceedings of the Fourteenth International Conference on Soil Mechanics and Foundation Engineering, Hamburg. A. A. Balkema, Rotterdam 1997, 2271–2274.Google Scholar
  82. [82]
    G. I. Schuëller, H. J. Pradlwarter, P. S. Koutsourelakis. A critical appraisal of reliability estimation procedures for high dimensions. Probabilistic Engineering Mechanics, to appear.Google Scholar
  83. [83]
    R. Seising (Ed.). Fuzzy Theorie und Stochastik. Vieweg, Braunschweig 1999.Google Scholar
  84. [84]
    G. L. S. Shackle. Decision — order and time in human affairs. Cambridge University Press, Cambridge 1969.Google Scholar
  85. [85]
    G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, Princeton, NJ 1976.Google Scholar
  86. [86]
    F. Tonon. On the use of random set theory to bracket the results of Monte Carlo simulations. Reliable Computing, 10 (2004), 107–137.CrossRefMathSciNetMATHGoogle Scholar
  87. [87]
    F. Tonon, A. Bernardini, I. Elishakoff. Hybrid Analysis of uncertainty: probability, fuzziness and anti-optimization Chaos, Solitons and Fractals 12 (2001), 1403–1414.CrossRefGoogle Scholar
  88. [88]
    F. Tonon, A. Bernardini, A. Mammino. Determination of parameters range in rock engineering by means of random set theory. Reliabilty Engineering & System Safety 70, 241–261 (2000).Google Scholar
  89. [89]
    F. Tonon, A. Bernardini, A. Mammino. Reliability analysis of rock mass response by means of random set theory. Reliabilty Engineering & System Safety 70, 263–282 (2000).Google Scholar
  90. [90]
    R. Viertl. Einführung in die Stochastik. Mit Elementen der Bayes-Statistik und der Analyse unscharfer Information. 3. Aufl., Springer-Verlag, Wien 2003.Google Scholar
  91. [91]
    P. Walley. Statistical Reasoning with Imprecise Probabilities. Chapman & Hall, London 1991.Google Scholar
  92. [92]
    P. Walley. Towards a unified theory of imprecise probability. International Journal of Approximate Reasoning 24 (2000), 125–148.CrossRefMathSciNetMATHGoogle Scholar
  93. [93]
    Z. Wang, G. J. Klir. Fuzzy Measure Theory. Plenum Press, New York, 1992.Google Scholar
  94. [94]
    K. Weichselberger. Elementare Grundbegriffe einer allgemeinen Wahrscheinlichkeitsrechnung I. Physica-Verlag, Heidelberg 2001.Google Scholar
  95. [95]
    O. Wolkenhauer. Data Engineering. Fuzzy Mathematics in Systems Theory and Data Analysis. John Wiley & Sons, New York 2001.Google Scholar
  96. [96]
    L. A. Zadeh. Fuzzy sets. Information and Control, 8 (1965) 338–353.CrossRefMathSciNetMATHGoogle Scholar
  97. [97]
    L. A. Zadeh. The concept of a linguistic variable and its applications to approximate reasoning, Part 1-3. Information Sci. 8 (1975), 199–250; 301-357; 9 (1975), 43-80.MathSciNetMATHGoogle Scholar
  98. [98]
    L. A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1 (1978), 3–28.CrossRefMathSciNetMATHGoogle Scholar
  99. [99]
    H.-J. Zimmermann. Fuzzy Sets, Decision Making, and Expert Systems. Kluwer Academic Publishers, Boston 1987.Google Scholar
  100. [100]
    H.-J. Zimmermann. Fuzzy Set Theory — and Its Applications. 2nd Ed., Kluwer Academic Publishers, Boston 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Michael Oberguggenberger
    • 1
  1. 1.Institut für Technische Mathematik, Geometrie und BauinformatikUniversität InnsbruckAustria

Personalised recommendations