Queueing models with fuzzy data in construction management

  • Michael Oberguggenberger


Queueing problems arise in civil engineering, e. g., in earth work at large construction sites when an excavator serves a number of transport vehicles. Due to a large number of fuzzy side conditions, it is not plausible that a precise estimate for the input parameters can be given, as required in standard probabilistic queueing models. In this article, two alternatives are described that allow to incorporate data uncertainty: a probabilistic queueing model with fuzzy input and fuzzy probabilities, and a purely fuzzy queueing model formulated in terms of network theory.


Membership Function Fuzzy Number Return Time Triangular Fuzzy Number Transport Vehicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Adeli and B. Möller (Eds.). Special Issue: Fuzzy Modeling. Vol. 14(2) of Computer Aided Civil and Infrastructure Engineering, 1999.Google Scholar
  2. [2]
    B. Baumgarten. Petri-Netze. Grundlagen und Anwendungen. Spektrum Akad. Verlag, Heidelberg 1996.Google Scholar
  3. [3]
    A. Bonarini and G. Bontempi. A qualitative simulation approach for fuzzy dynamical models. ACM Trans. Modeling Comp. Sim., 4 (1994), 285–313.Google Scholar
  4. [4]
    J. J. Buckley. Elementary queueing theory based on possibility theory. Fuzzy Sets and Systems, 37 (1990), 43–52.MathSciNetMATHGoogle Scholar
  5. [5]
    J. J. Buckley. Solving fuzzy equations. Fuzzy Sets and Systems, 50 (1992), 1–14.CrossRefMathSciNetMATHGoogle Scholar
  6. [6]
    J. Cardoso and H. Camargo (Eds.). Fuzziness in Petri Nets. Physica-Verlag, Heidelberg 1999.Google Scholar
  7. [7]
    P. Diamond and P. Kloeden. Metric Spaces of Fuzzy Sets. World Scientific, Singapore, 1994.Google Scholar
  8. [8]
    D. Dubois and H. Prade. Towards fuzzy differential calculus, part 3: differentiation. Fuzzy Sets and Systems, 8 (1982), 223–233.Google Scholar
  9. [9]
    D. Dubois and H. Prade. Possibility Theory. Plenum Press, New York, 1988.Google Scholar
  10. [10]
    Th. Fetz, J. Jäger, D. Köll, G. Krenn, H. Lessmann, M. Oberguggenberger, and R. Stark. Fuzzy models in geotechnical engineering and construction management. In this volume.Google Scholar
  11. [11]
    Th. Fetz, M. Oberguggenberger, S. Pittschmann. Applications of possibility and evidence theory in civil engineereing. Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems, 8 (2000), 295–309.MathSciNetGoogle Scholar
  12. [12]
    O. Kaleva. Fuzzy differential equations. Fuzzy Sets and Systems, 24 (1987), 301–307.CrossRefMathSciNetMATHGoogle Scholar
  13. [13]
    O. Kaleva. The Cauchy problem for fuzzy differential equations. Fuzzy Sets and Systems, 35 (1990), 389–396.CrossRefMathSciNetMATHGoogle Scholar
  14. [14]
    A. Kandel. Fuzzy Mathematical Techniques with Applications. Addison-Wesley, Reading, 1986.Google Scholar
  15. [15]
    C. Kao, C.-C. Li, S.-P. Chen. Parametric programming to the analysis of fuzzy queues. Fuzzy Sets and Systems, 107 (1999), 93–100.CrossRefMathSciNetGoogle Scholar
  16. [16]
    L. Kleinrock. Queueing Systems, vol. I: Theory. John Wiley, New York, 1975.Google Scholar
  17. [17]
    G. Kühn. Der maschinelle Erdbau. Teubner-Verlag, Stuttgart, 1984.Google Scholar
  18. [18]
    H. Lessmann, J. Mühlögger, and M. Oberguggenberger. Netzplantechnik mit unscharfen Methoden. Bauingenieur 69 (1994), 469–478.Google Scholar
  19. [19]
    R.-J. Li and E. S. Lee. Analysis of fuzzy queues. Computers Math. Appl., 17 (1989), 1143–1147.MathSciNetGoogle Scholar
  20. [20]
    B. Möller. Fuzzy-Modellierung in der Baustatik. Bauingenieur, 72 (1997), 75–84.Google Scholar
  21. [21]
    D. S. Negi, E. S. Lee. Analysis and simulation of fuzzy queues. Fuzzy Sets and Systems, 46 (1992), 321–330.CrossRefGoogle Scholar
  22. [22]
    M. Oberguggenberger. The mathematics of uncertainty: models, methods and interpretations. In this volume.Google Scholar
  23. [23]
    M. Oberguggenberger and S. Pittschmann. Differential equations with fuzzy parameters. Math. Mod. Systems, 5 (1999), 181–202.Google Scholar
  24. [24]
    M. Oberguggenberger, G. I. Schuëller, K. Marti (Eds.). Special Issue: Fuzzy Sets, Imprecise Probability and Stochastics in Engineering. Zeitschrift f. Angewandte Mathematik u. Mechanik, to appear 2004.Google Scholar
  25. [25]
    K. N. Otto, A. D. Lewis, and E. K. Antonsson. Membership induced on manifolds by vector fields and flows. Fuzzy Sets and Systems, 70 (1995), 15–29.CrossRefMathSciNetGoogle Scholar
  26. [26]
    R. Palm and D. Driankov. Fuzzy inputs. Fuzzy Sets and Systems, 70 (1995), 315–335.CrossRefMathSciNetGoogle Scholar
  27. [27]
    M. L. Puri and D. Ralescu. Differentials of fuzzy functions. J. Math. Anal. Appl., 91 (1983), 552–558.CrossRefMathSciNetGoogle Scholar
  28. [28]
    T. J. Ross, J. M. Booker, W. J. Parkinson (Eds.). Fuzzy Logic and Probability Applications — Bridging the Gap. SIAM, Philadelphia PA, ASA, Alexandria VA, 2002.Google Scholar
  29. [29]
    S. Seikkala. On the fuzzy initial value problem. Fuzzy Sets and Systems, 24 (1987), 319–330.CrossRefMathSciNetMATHGoogle Scholar
  30. [30]
    L. A. Zadeh. The concept of a linguistic variable and its applications to approximate reasoning, Part 1-3. Information Sci 8 (1975), 199–250; 301-357; 9 (1975), 43-80.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Michael Oberguggenberger
    • 1
  1. 1.Institut für Technische Mathematik, Geometrie und BauinformatikUniversität InnsbruckAustria

Personalised recommendations