Fuzzy, probabilistic and stochastic modelling of an elastically bedded beam

  • Michael Oberguggenberger
  • Francesco Russo


This article sets out to compare the effects of modelling uncertainty using fuzzy sets, random variables and stochastic analysis. With the aid of an example from civil engineering - the bending equation for an elastically bedded beam — we discuss what each model is or is not capable of capturing. All models may be adequately used for variability studies, but may fail to detect the effect of localized parameter fluctuations on the response of the system. In the stochastics setting, we show an instance of the linearization effect of large noise which says that under large stochastic excitations, the contributions of nonlinear terms may be annihilated.


Membership Function Fuzzy Number Stochastic Approach Large Noise Imprecise Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Albeverio, Z. Haba and F. Russo. Trivial solutions for a non-linear two-space dimensional wave equation perturbed by space-time white noise. Stochastics and Stochastics Reports, 56:127–160, 1996.MathSciNetGoogle Scholar
  2. [2]
    S. Albeverio, Z. Haba, F. Russo. A two-space dimensional semilinear heat equation perturbed by (Gaussian) white noise. Probability Theory and Related Fields, 121:319–366, 2001.MathSciNetGoogle Scholar
  3. [3]
    G. Auvinet and L. González. Three-dimensional reliability analysis of earth slopes. Computers and Geotechnics, 26:247–261, 2000.CrossRefGoogle Scholar
  4. [4]
    H. Bandemer, W. Näther. Fuzzy Data Analysis. Kluwer Acad. Publ., 1992.Google Scholar
  5. [5]
    V.V. Bolotin. Statistical Methods in Structural Mechanics. Holden-Day, Inc., San Francisco, 1969.Google Scholar
  6. [6]
    R. I. Borja, R. A. Regueiro and T. Y. Lai. FE modeling of strain localization in soft rock. Journal of Geotechnical and Geoenvironmental Engineering, 126:335–343, 2000.Google Scholar
  7. [7]
    R. Chambon, D. Caillerie and N. El Hassan. One-dimensional localisation studied with a second grade model. European Journal of Mechanics A/Solids, 17:637–656, 1998.MathSciNetGoogle Scholar
  8. [8]
    O. Ditlevsen, J. Tarp-Johansen and H. Denver. Bayesian soil assessments combining prior with posterior censored samples. Computers and Geotechnics, 26:187–198, 2000.CrossRefGoogle Scholar
  9. [9]
    G.R. Dodagoudar and G. Venkatachalam. Reliability analysis of slopes using fuzzy sets theory. Computers and Geotechnics, 27:101–115, 2000.CrossRefGoogle Scholar
  10. [10]
    D. Dubois, H. Prade. Possibility Theory. Plenum Press, New York, 1988.Google Scholar
  11. [11]
    Th. Fetz, J. Jäger, D. Köll, G. Krenn, H. Lessmann, M. Oberguggenberger and R. Stark. Fuzzy models in geotechnical engineering and construction management. Computer-Aided Civil and Infrastructure Engineering, 14:93–106, 1999.CrossRefGoogle Scholar
  12. [12]
    Th. Fetz, M. Oberguggenberger and S. Pittschmann. Applications of possibility and evidence theory in civil engineering. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 8:295–309, 2000.MathSciNetGoogle Scholar
  13. [13]
    M. A. Guitiérrez, R. De Borst. Numerical analyis of localization using a viscoplastic regularization: influence of stochastic material defects. International Journal for Numerical Methods in Engineering, 44:1823–1841, 1999.Google Scholar
  14. [14]
    G. J. Klir and M. J. Wiermann. Uncertainty-Based Information. Elements of Generalized Information Theory. Physica-Verlag, Heidelberg, 1998.Google Scholar
  15. [15]
    B. S. L. P. de Lima and N. F. F. Ebecken. A comparison of models for uncertainty analysis by the finite element method. Finite Elements in Analysis and Design, 34:211–232, 2000.Google Scholar
  16. [16]
    M. Oberguggenberger, S. Pittschmann. Differential equations with fuzzy parameters. Mathematical and Computer Modelling of Dynamical Systems, 5:181–202, 1999.Google Scholar
  17. [17]
    M. Oberguggenberger and F. Russo. Nonlinear SPDEs: Colombeau solutions and pathwise limits. In: L. Decreusefond, J. Gjerde, B. Øksendal and A.S. üstünel (Eds.). Stochastic Analysis and Related Topics VI. Birkhäuser, Boston, 1998, 319–332.Google Scholar
  18. [18]
    M. Oberguggenberger and F. Russo. Nonlinear stochastic wave equations. Integral Transforms and Special Functions, 6:71–83, 1998.MathSciNetGoogle Scholar
  19. [19]
    M. Oberguggenberger and F. Russo. Singular limiting behavior in nonlinear stochastic wave equations. In: A. B. Cruzeiro, J.-C. Zambrini (Eds.), Stochastic Analysis and Mathematical Physics. Birkhäuser-Verlag, Basel, 2001, 87–99.Google Scholar
  20. [20]
    B. Øksendal. Stochastic Differential Equations. An Introduction with Applications. Fifth Edition, Springer, Berlin, 1998.Google Scholar
  21. [21]
    T. L. L. Orr. Selection of characteristic values and partial factors in geotechnical designs to Eurocode 7. Computers and Geotechnics, 26:263–279, 2000.CrossRefGoogle Scholar
  22. [22]
    R. Rackwitz. Reviewing probabilistic soils modelling. Computers and Geotechnics, 26:199–223, 2000.CrossRefGoogle Scholar
  23. [23]
    F. Russo and M. Oberguggenberger. White noise driven stochastic partial differential equations: triviality and non-triviality. In: M. Grosser, G. Hörmann, M. Kunzinger and M. Oberguggenberger (Eds.), Nonlinear Theory of Generalized Functions. Chapman & Hall/CRC, Boca Raton, 1999, 315–333.Google Scholar
  24. [24]
    L. Schwartz. Théorie des Distributions. Nouvelle édition, Hermann, Paris, 1966.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Michael Oberguggenberger
    • 1
  • Francesco Russo
    • 2
  1. 1.Institut für Technische Mathematik, Geometrie und BauinformatikUniversität InnsbruckAustria
  2. 2.Institut GaliléeUniversité Paris-NordVilletaneuseFrance

Personalised recommendations