Peptide Vaccination of Myeloid Leukemia

  • D. Kurbegov
  • J. J. Molldrem
Conference paper
Part of the Ernst Schering Research Foundation Workshop book series (SCHERING FOUND, volume 11)

9.4 Conclusion

In summary, we are beginning to learn more about the nature of the antigens targeted by T cells that mediate autologous antileukemia immunity and those that are the targets of the GVL effect. Some self-antigens might also be the targets of alloreactive CTL, as we have shown for PR1. If more antigens were identified, logical immunotherapy strategies such as vaccines or adoptive cellular therapies could be tested in patients. Obstacles to this approach remain, however. We must identify which of the hematopoietic tissue-restricted peptides are recognized by T cells and we must improve our understanding of the nature of peripheral T cell tolerance so that we might break immune tolerance to certain peptide determinants without causing potentially destructive autoimmunity. In the future, allogeneic stem cell transplantation is likely to evolve as a platform for delivering antigen-specific adoptive cellular therapies and for post-transplant vaccination strategies where donor CTL are elicited in the recipient. Both autologous and allogeneic transplant may reset T cell homeostasis and allow a more complete T cell repertoire to emerge postgrafting that could be further expanded selectively against tumor antigens by vaccination posttransplant, as in a vaccination by proxy therapy in the case of allogeneic transplantation.


Peptide Vaccination Acute Myelogenous Leukemia Patient Minor Histocompatibility Antigen Adoptive Cellular Therapy Donor Lymphocyte Transfusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, Bell JI, McMichael AJ, Davis MM (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274(5284):94–96PubMedCrossRefGoogle Scholar
  2. Amrolia PJ, Reid SD, Gao L, Schultheis B, Dotti G, Brenner MK, Melo JV, Goldman JM, Stauss HJ (2002) Allo-restricted cytotoxic t cells specific for human CD45 show potent antileukemic activity. Blood 101(3):1007–1014PubMedCrossRefGoogle Scholar
  3. Antin JH (1993) Graft-versus-leukemia: no longer an epiphenomenon. Blood 82:2273–2277PubMedGoogle Scholar
  4. Azuma T, Makita M, Ninomiya K, Fujita S, Harada M, Yasukawa M (2002) Identification of a novel WT1-derived peptide which induces human leukocyte antigenA24-restricted anti-leukaemia cytotoxic T lymphocytes. Br JHaematol 116(3):601–603CrossRefGoogle Scholar
  5. Ballieux BE, van der Burg SH, Hagen EC, van der Woude FJ, Melief CJ, Daha MR (1995) Cell-mediated autoimmunity in patients with Wegener’s granulomatosis (WG). Clin Exp Immunol 100(2): 186–193PubMedCrossRefGoogle Scholar
  6. Behre G, Zhang P, Zhang DE, Tenen DG (1999) Analysis of the modulation of transcriptional activity in myelopoiesis and leukemogenesis. Methods 17(3):231–237PubMedCrossRefGoogle Scholar
  7. Bellantuono I, Gao L, Parry S, Marley S, Dazzi F, Apperley J, Goldman JM, Stauss HJ (2002) Two distinct HLAA0201-presented epitopes of the Wilms tumor antigen 1 can function as targets for leukemia-reactive CTL. Blood 100(10):3835–3837PubMedCrossRefGoogle Scholar
  8. Bergmann L, Maurer U, Weidmann E (1997 a) Wilms tumor gene expression in acute myeloid leukemias. Leuk Lymphoma 25(5/6):435–443PubMedGoogle Scholar
  9. Bergmann L, Miething C, Maurer U, Brieger J, Karakas T, Weidmann E, Hoelzer D (1997b) High levels of Wilms’ tumor gene (wtl) mRNA in acute myeloid leukemias are associated with a worse long-term outcome. Blood 90(3): 1217–1225PubMedGoogle Scholar
  10. Bocchia M, Wentworth PA, Southwood S, Sidney J, McGraw K, Scheinberg DA, Sette A (1995) Specific binding of leukemia oncogene fusion protein peptides to HLA class I molecules. Blood 85(10):2680–2684PubMedGoogle Scholar
  11. Bocchia M, Korontsvit T, Xu Q, Mackinnon S, Yang SY, Sette A, Scheinberg DA (1996) Specific human cellular immunity to bcr-abl oncogene-derived peptides. Blood 87(9):3587–3592PubMedGoogle Scholar
  12. Bories D, Raynal MC, Solomon DH, Darzynkiewicz Z, Cayre YE (1989) Down-regulation of a serine protease, myeloblastin, causes growth arrest and differentiation of promyelocytic leukemia cells. Cell 59:959–968PubMedCrossRefGoogle Scholar
  13. Borregaard N, Cowland JB (1997) Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89(10):3503–3521PubMedGoogle Scholar
  14. Braunschweig I, Wang C, Molldrem J (2000) Cytotoxic T lymphocytes (CTL) specific for myeloperoxidase-derived HLA-A2-restricted peptides specifically lyse AML and CML cells. Blood 96(11):3291Google Scholar
  15. Brieger J, Weidmann E, Maurer U, Hoelzer D, Mitrou PS, Bergmann L (1995) The Wilms’ tumor gene is frequently expressed in acute myeloblastic leukemias and may provide a marker for residual blast cells detectable by PCR. Ann Oncol 6(8):811–816PubMedGoogle Scholar
  16. Brouwer E, Stegeman CA, Huitema MG, Limburg PC, Kallenberg CG (1994) T cell reactivity to proteinase 3 and myeloperoxidase in patients with Wegener’s granulomatosis (WG). Clin Exp Immunol 98(3):448–453PubMedCrossRefGoogle Scholar
  17. Callan MF, Tan L, Annels N, Ogg GS, Wilson JD, O’Callaghan CA, Steven N, McMichael AJ, Rickinson AB (1998) Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein-Barr virus in vivo. J Exp Med 87(9): 1395–1402CrossRefGoogle Scholar
  18. Chambost H, van Baren N, Brasseur F, Olive D (2001) MAGE-A genes are not expressed in human leukemias. Leukemia 15(11): 1769–1771PubMedGoogle Scholar
  19. Chen T, Meier R, Ziemiecki A, Fey MF, Tobler A (1994) Myeloblastinproteinase 3 belongs to the set of negatively regulated primary response genes expressed during in vitro myeloid differentiation. Biochem Biophys Res Commun 200(2): 1130–1135PubMedCrossRefGoogle Scholar
  20. Chen W, Chatta K, Rubin W, et al. (1995) Polymorphic segments of CD45 can serve as targets for GVHD and GVL responses (abstract). Blood 86:158aGoogle Scholar
  21. Clark RE, Dodi IA, Hill SC, Lill JR, Aubert G, Macintyre AR, Rojas J, Bourdon A, Bonner PL, Wang L, Christmas SE, Travers PJ, Creaser CS, Rees RC, Madrigal JA (2001) Direct evidence that leukemic cells present HLA-associated immunogenic peptides derived from the BCR ABL b3a2 fusion protein. Blood 98(10):2887–2893PubMedCrossRefGoogle Scholar
  22. Collins RH Jr, Shpilberg O, Drobyski WR, Porter DL, Giralt S, Champlin R, Goodman SA, Wolff SN, Hu W, Verfaillie C, List A, Dalton W, Ognoskie N, Chetrit A, Antin JH, Nemunaitis J (1997) Donorleukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol 5(2):433–444Google Scholar
  23. den Haan JM, Sherman NE, Blokland E, Huczko E, Koning F, Drijfhout JW, Skipper J, Shabanowitz J, Hunt DF, Engelhard VH, et al. (1995) Identification of a graft versus host disease-associated human minor histocompatibility antigen. Science 268:1476–1480Google Scholar
  24. den Haan JM, Meadows LM, Wang W, Pool J, Blokland E, Bishop TL, Reinhardus C, Shabanowitz J, Offringa R, Hunt DF, Engelhard VH, Goulmy E (1998) The minor histocompatibility antigen HA-1: a diallelic gene with a single amino acid polymorphism. Science 279:1054–1057CrossRefGoogle Scholar
  25. Dengler R, Munstermann U, al-Batran S, Hausner I, Faderl S, Nerl C, Emmerich B (1995) Immunocytochemical and flow cytometric detection of proteinase 3 (myeloblastin) in normal and leukaemic myeloid cells. Br J Haematol 89(2):250–257PubMedGoogle Scholar
  26. Dermime S, Molldrem J, Parker KC, et al. (1995) Human CD8+ T lymphocytes recognize the fusion region of bcrlabl hybrid protein present in chronic myelogenous leukemia (abstract). Blood 86:158 aGoogle Scholar
  27. Dolstra H, Fredrix H, Preijers F, Goulmy E, Figdor CG, de Witte TM, van de Wiel-van Kemenade E (1997) Recognition of a B cell leukemia-associated minor histocompatibility antigen by CTL. J Immunol 158(2):560–565PubMedGoogle Scholar
  28. Faber LM, van der Hoeven J, Goulmy E, Hooftman-den Otter AL, van Luxemburg-Heijs SA, Willemze R, Falkenburg JH (1995 a) Recognition of clonogenic leukemic cells, remission bone marrow and HLA-identical donor bone marrow by CD8+ or CD4+ minor histocompatibility antigen-specific cytotoxic T lymphocytes. J Clin Invest 96(2):877–883PubMedCrossRefGoogle Scholar
  29. Faber LM, van Luxemburg-Heijs SA, Veenhof WF, Willemze R, Falkenburg JH (1995 b) Generation of CD4+ cytotoxic T-lymphocyte clones from a patient with severe graft-versus-host disease after allogeneic bone marrow transplantation: implications for graft-versus-leukemia reactivity. Blood 86(7):2821–2828PubMedGoogle Scholar
  30. Faber LM, van Luxemburg-Heijs SA, Rijnbeek M, Willemze R, Falkenburg JH (1996) Minor histocompatibility antigen-specific, leukemia-reactive cytotoxic T cell clones can be generated in vitro without in vivo priming using chronic myeloid leukemia cells as stimulators in the presence of alpha-interferon. Biol Blood Marrow Transplant 2(l):31–36PubMedGoogle Scholar
  31. Franssen CF, Tervaert JW, Stegeman CA, Kallenberg CG (1996) c ANCA as a marker of Wegener’s disease. Lancet 347(8994): 116; discussion 118PubMedGoogle Scholar
  32. Franssen CF, Stegeman CA, Kallenberg CG, Gans RO, De Jong PE, Hoorntje SJ, Tervaert JW (2000) Antiproteinase 3-and antimyeloperoxidase-associated vasculitis. Kidney Int 57(6):2195–2206PubMedCrossRefGoogle Scholar
  33. Gao L, Bellantuono I, Elsasser A, Marley SB, Gordon MY, Goldman JM, Stauss HJ (2000) Selective elimination of leukemic CD34(+) progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood 95(7):2198–2203PubMedGoogle Scholar
  34. Giralt SA, Kolb HJ (1996) Donor lymphocyte infusions. Curr Opin Oncol 8(2):96–102PubMedGoogle Scholar
  35. Goulmy E, Schipper R, Pool J, Blokland E, Falkenburg JH, Vossen J, Gratwohl A, Vogelsang GB, van Houwelingen HC, van Rood JJ (1996) Mismatches of minor histocompatibility antigens between HLA-identical donors and recipients and the development of graft-versus-host disease alter bone marrow transplantation. N Engl J Med 334(5):281–285PubMedCrossRefGoogle Scholar
  36. Jennette JC, Thomas DB, Falk RJ (2001) Microscopic polyangiitis (microscopic polyarteritis). Semin Diagn Pathol 18(1):3–13PubMedGoogle Scholar
  37. Kolb HJ, Holler E (1997) Adoptive immunotherapy with donor lymphocyte transfusions. Curr Opin Oncol 9(2):139–145PubMedCrossRefGoogle Scholar
  38. Kolb HJ, Schattenberg A, Goldman JM, et al. (1995) Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia. Blood 86(5):2041–2050PubMedGoogle Scholar
  39. Kolb HJ, Mittermuller J, Holler E, Thalmeier K, Bartram CR (1996) Graft-versus-host reaction spares normal stem cells in chronic myelogenous leukemia. Bone Marrow Transplant 17(3):449–452PubMedGoogle Scholar
  40. Komanduri KV, Viswanathan MN, Wieder ED, Schmidt DK, Bredt BM, Jacobson MA, McCune JM (1998) Restoration of cytomegalovirus-specific CD4+ T lymphocyte responses after ganciclovir and highly active antiretroviral therapy in individuals infected with HIV-1. Nat Med 4(8):953–956PubMedCrossRefGoogle Scholar
  41. Komanduri KV, Donahoe SM, Moretto WJ, Schmidt DK, Gillespie G, Ogg GS, Roederer M, Nixon DF, McCune JM (2001) Direct measurement of CD4+ and CD8+ T-cell responses to CMV in HIV-1-infected subjects. Virology 279(2):459–470PubMedCrossRefGoogle Scholar
  42. Lee PP, Yee C, Savage PA, Fong L, Brockstedt D, Weber JS, Johnson D, Swetter S, Thompson J, Greenberg PD, Roederer M, Davis MM (1999) Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med 5(6):677PubMedCrossRefGoogle Scholar
  43. Marijt WA, Heemskerk MH, Kloosterboer FM, Goulmy E, Kester MG, van der Hoorn MA, van Luxemburg-Heys SA, Hoogeboom M, Mutis T, Drijfhout JW, van Rood JJ, Willemze R, Falkenburg JH (2003) Hematopoiesis-restricted minor histocompatibility antigens HA-1-or HA-2-specific T cells can induce complete remissions of relapsed leukemia. Proc Natl Acad Sci 100(5):2742–2747PubMedCrossRefGoogle Scholar
  44. Molldrem J, Dermime S, Parker K, Jiang YZ, Mavroudis D, Hensel N, Fukushima P, Barrett AJ (1996) Targeted T-cell therapy for human leukemia: cytotoxic T lymphocytes specific for a peptide derived from pro-teinase 3 preferentially lyse human myeloid leukemia cells. Blood 88(7):2450–2457PubMedGoogle Scholar
  45. Molldrem JJ, Clave E, Jiang YZ, Mavroudis D, Raptis A, Hensel N, Agarwala V, Barrett AJ (1997) Cytotoxic T lymphocytes specific for a nonpolymorphic proteinase 3 peptide preferentially inhibit chronic myeloid leukemia colony-forming units. Blood 90(7):2529–2534PubMedGoogle Scholar
  46. Molldrem JJ, Lee PP, Wang C, Champlin RE, Davis MM (1999) A PRl-human leukocyte antigen A2 tetramer can be used to isolate low-frequency cytotoxic T lymphocytes from healthy donors that selectively lyse chronic myelogenous leukemia. Cancer Res 59(11):2675–2681PubMedGoogle Scholar
  47. Molldrem JJ, Lee PP, Wang C, Felio K, Kantarjian HM, Champlin RE, Davis MM (2000) Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat Med 6(9):1018–1023PubMedCrossRefGoogle Scholar
  48. Muller-Berat N, Minowada J, Tsuji-Takayama K, Drexler H, Lanotte M, Wieslander J, Wiik A (1994) The phylogeny of proteinase 3 myeloblastin, the autoantigen in Wegener’s granulomatosis, and myeloperoxidase as shown by immunohistochemical studies in human leukemic cell lines. Clin Immunol Immunopathol 70(l):51–59PubMedCrossRefGoogle Scholar
  49. Murata M, Warren EH, Riddell ER (2003) A human minor histocompatibility antigen resulting from differential expression due to a gene deletion. J Exp Med 197(10): 1279–1289PubMedCrossRefGoogle Scholar
  50. Oka Y, Elisseeva OA, Tsuboi A, Ogawa H, Tamaki H, Li H, Oji Y, Kim EH, Soma T, Asada M, Ueda K, Maruya E, Saji H, Kishimoto T, Udaka K, Sugiyama H (2000) Human cytotoxic T-lymphocyte responses specific for peptides of the wild-type Wilms’ tumor gene (WT1) product. Immunogenetics 51(2):99–107PubMedCrossRefGoogle Scholar
  51. Raptis A, Clave E, Mavroudis D, Molldrem J, Van Rhee F, Barrett AJ (1998) Polymorphism in CD33 and CD34 genes: a source of minor histocompatibility antigens in haemopoietic progenitor cells? Br J Haematol 102(5): 1354–1358PubMedCrossRefGoogle Scholar
  52. Savige J, Gillis D, Benson E, Davies D, Esnault V, Falk RJ, Hagen EC, Jayne D, Jennette JC, Paspaliaris B, Pollock W, Pusey C, Savage CO, Silvestrini R, van der Woude F, Wieslander J, Wiik A (1999) International Consensus Statement on Testing and Reporting of Antineutrophil Cytoplasmic Antibodies (ANCA). Am J Clin Pathol lll(4):507–513Google Scholar
  53. Scheibenbogen C, Letsch A, Thiel E, Schmittel A, Mailaender V, Baerwolf S, Nagorsen D, Keilholz U (2002) CD8 T-cell responses to Wilms tumor gene product WT1 and proteinase 3 in patients with acute myeloid leukemia. Blood 100(6):2132–2137PubMedCrossRefGoogle Scholar
  54. Sturrock AB, Franklin KF, Rao G, Marshall BC, Rebentisch MB, Lemons RS, Hoidal JR (1992) Structure, chromosomal assignment, and expression of the gene for proteinase 3. J Biol Chem 267:21193–21199PubMedGoogle Scholar
  55. van der Harst D, Goulmy E, Falkenburg JH, Kooij-Winkelaar YM, van Luxemburg-Heijs SA, Goselink HM, Brand A (1994) Recognition of minor histocompatibility antigens on lymphocytic and myeloid leukemic cells by cytotoxic T-cell clones. Blood 83(4): 1060–1066PubMedGoogle Scholar
  56. van Rhee F, Lin F, Cullis JO, Spencer A, Cross NC, Chase A, Garicochea B, Bungey J, Barrett J, Goldman JM (1994) Relapse of chronic myeloid leukemia after allogeneic bone marrow transplant: the case for giving donor lymphocyte transfusions before the onset of hematological relapse. Blood 83:3377–3383PubMedGoogle Scholar
  57. Warren EH, Greenberg PD, Riddell SR (1998) Cytotoxic T-lymphocyte-defined human minor histocompatibility antigens with a restricted tissue distribution. Blood 91(6):2197–2207PubMedGoogle Scholar
  58. Williams RC Jr, Staud R, Malone CC, Payabyab J, Byres L, Underwood D (1994) Epitopes an proteinase 3 recognized by antibodies from patients with Wegener’s granulomatosis. J Immunol 152:4722–4732PubMedGoogle Scholar
  59. Zhang P, Nelson E, Radomska HS, Iwasaki-Arai J, Akashi K, Friedman AD, Tenen DG (2002) Induction of granulocytic differentiation by 2 pathways. Blood 99(12):4406–4412PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • D. Kurbegov
    • 1
  • J. J. Molldrem
    • 1
  1. 1.MD Anderson Cancer CenterHoustonUSA

Personalised recommendations