Advertisement

Bone Marrow Cell Therapy for Genetic Disorders of Bone

  • E. M. Horwitz
  • W. W. K. Koo
  • L. A. Fitzpatrick
  • M. D. Neel
  • P. L. Gordon
Part of the Ernst Schering Research Foundation Workshop book series (SCHERING FOUND, volume 11)

4.6 Conclusions

Bone marrow cell therapy for nonhematopoietic disorders is extraordinary promising, but such therapy is still in early development. We believe that our work, begun in 1996, has established the proof of principle: bone marrow cell therapy can be applied to nonhematopoietic disorders and especially to disorders of bone. In fact, a recent paper reported that another genetic disorder of bone, hypophosphatasia, had been successfully treated with BMT and a subsequent marrow stem cell infusion (Whyte et al. 2003). Still required, however, are methods that will promote long-term, tissue-specific proliferation and differentiation, thus ensuring maximum clinical benefits from this cell-based treatment strategy.

Keywords

Mesenchymal Stem Cell Bone Marrow Transplantation Mesenchymal Cell Osteogenesis Imperfecta Graft Versus Host Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, Hardy W, Devine S, Ucker D, Deans R, Moseley A, Hoffman R (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30:42–48PubMedCrossRefGoogle Scholar
  2. Byers PH (1995) Disorders of collagen biosynthesis and structure. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 4029–4077Google Scholar
  3. Byers PH, Wallis GA, Willing MC (1991) Osteogenesis imperfecta: translation of mutation to phenotype. J Med Genet 28:433–442PubMedCrossRefGoogle Scholar
  4. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650PubMedCrossRefGoogle Scholar
  5. Constantinou CO, Pack M, Young S, Prockop DJ (1990) Phenotypic heterogeneity in osteogenesis imperfecta: The mildly affected mother of a Pro-band with a lethal variant has the same mutation substituting cysteine for α1-glycine 904 in a type I procollagen gene (COL1A1). Am J Hum Genet 47:670–679PubMedGoogle Scholar
  6. Daly K, Wisbeach A, Sanpera I, Fixsen JA (1996) The prognosis for walking in osteogenesis imperfecta. J Bone Joint Surg Br 78:477–480PubMedGoogle Scholar
  7. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843PubMedCrossRefGoogle Scholar
  8. Engelbert RH, Uiterwaal CS, Gulmans VA, Pruijs H, Helders PJ (2000) Osteogenesis imperfecta in childhood: prognosis for walking. J Pediatr 137:397–402PubMedCrossRefGoogle Scholar
  9. Glorieux FH, Bishop NJ, Plotkin H, Chabot G, Lanoue G, Travers R (1998) Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med 339:947–952PubMedCrossRefGoogle Scholar
  10. Horwitz EM (2003) Stem cell plasticity: a new image of the bone marrow stem cell. Curr Opin Pediatr 15:32–37PubMedCrossRefGoogle Scholar
  11. Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, Sussman M, Orchard P, Marx JC, Pyeritz RE, Brenner MK (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5:309–313PubMedCrossRefGoogle Scholar
  12. Horwitz EM, Prockop DJ, Gordon PL, Koo WW, Fitzpatrick LA, Neel MD, McCarville ME, Orchard PJ, Pyeritz RE, Brenner MK (2001) Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 97:1227–1231PubMedCrossRefGoogle Scholar
  13. Horwitz EM, Gordon PL, Koo WKK, Marx JC, Neel MD, McNall RY, Muul L, Hofmann T (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci 99(13):8932–8937PubMedCrossRefGoogle Scholar
  14. Krause DS (2002) Plasticity of marrow-derived stem cells. Gene Ther 9:754–758PubMedCrossRefGoogle Scholar
  15. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377PubMedCrossRefGoogle Scholar
  16. Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 57:11–20PubMedCrossRefGoogle Scholar
  17. Mashiba T, Hirano T, Turner CH, Forwood MR, Johnston CC, Burr DB (2000) Suppressed bone turnover by bisphosphonates increases micro-damage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res 15:613–620PubMedCrossRefGoogle Scholar
  18. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRefGoogle Scholar
  19. Roldan EJ, Pasqualini T, Plantalech L (1999) Bisphosphonates in children with osteogenesis imperfecta may improve bone mineralization but not bone strength. Report of two patients. J Pediatr Endocrinol Metab 12:555–559PubMedGoogle Scholar
  20. Sillence DO (1997) Disorders of bone density, volume, and mineralization. In: Rimoin DL, Connor JM, Pyeritz RE (eds) Emery and Rimoin’s principles and practice of medical genetics, 3rd edn, Vol II. Churchill Livingstone, New York, pp 2817–2835Google Scholar
  21. van der Plas A, Aarden EM, Feijen JH, de Boer AH, Wiltink A, Alblas MJ, de Leij L, Nijweide PJ (1994) Characteristics and properties of osteocytes in culture. J Bone Miner Res 9:1697–1704PubMedCrossRefGoogle Scholar
  22. Wang Q, Orrison BM, Marini JC (1993) Two additional cases of osteogenesis imperfecta with substitutions for glycine in the α 2(I) collagen chain. A regional model relating mutation location with phenotype. J Biol Chem 268:25162–25167PubMedGoogle Scholar
  23. Whyte MR, Kurtzberg J, McAlister WH, Mumm S, Podgornik MN, Coburn SP, Ryan LM, Miller CR, Gottesman GS, Smith AK, Douville J, Waters-Pick B, Armstrong RD, Martin PL (2003) Marrow cell transplantation for infantile hypophosphatasia. J Bone Miner Res 18:624–636PubMedCrossRefGoogle Scholar
  24. Wilkinson JM, Scott BW, Bell MJ (1997) The prognosis for walking in osteogenesis imperfecta. J Bone Joint Surg Br 79:339PubMedCrossRefGoogle Scholar
  25. Wulf GG, Jackson KA, Goodell MA (2001) Somatic stem cell plasticity: current evidence and emerging concepts. Exp Hematol 29:1361–1370PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • E. M. Horwitz
    • 1
  • W. W. K. Koo
    • 2
  • L. A. Fitzpatrick
    • 3
  • M. D. Neel
    • 1
  • P. L. Gordon
    • 1
  1. 1.Divisions of Stem Cell Transplantation and Experimental HematologySt. Jude Children’s Research HospitalMemphisUSA
  2. 2.Wayne State UniversityDetroitUSA
  3. 3.Endocrine Research Unit, Department of Endocrinology, Diabetes, Metabolism, Nutrition and Internal MedicineMayo ClinicRochesterUSA

Personalised recommendations