Skip to main content

Neurobiologische Grundlagen

  • Chapter
Frontalhirn

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Akert K (1964) Comparative anatomy of the frontal cortex and thalamocortical connections. In: Warren JM, Akert K (eds) The frontal granular cortex and behaviour. McGraw-Hill, New York, pp 372–396

    Google Scholar 

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9: 357–381

    CAS  Google Scholar 

  • Alexander GE, Crutcher MD, DeLong MR (1990) Basal gangliothalamocortical circuits: parallel substrates for motor, oculomotor, »prefrontal« and »limbic« functions. In: Uylings HBM, Van Eden CG, De Bruin JPC et al. (eds) Progress in brain research, vol 85, Elsevier, Amsterdam, pp 119–146

    Google Scholar 

  • Arbib MA(1981) Perceptual structures and distributed motor control. In: Brooks VB (ed) Handbook of physiology; nervous system, Vol. II. American Physiological Society, Bethesda, MD, pp 1448–1480

    Google Scholar 

  • Arnsten AFT, Goldman-Rakic PS (1984) Selective prefrontal cortical projections to the region of the locus coeruleus and raphe nuclei in the rhesus monkey. Brain Res 306: 6–18

    Article  Google Scholar 

  • Asaad WF, Rainer G, Miller EK (1998) Neural activity in the primate prefrontal cortex during associative learning. Neuron 21: 1399–1407

    Article  CAS  PubMed  Google Scholar 

  • Asaad WF, Rainer G, Miller EK (2000) Task-specific neural activity in the primate prefrontal cortex. J Neurophysiol 84(1): 451–459

    Google Scholar 

  • Baddeley AD (1992) Working memory. Science 255: 556–559

    CAS  PubMed  Google Scholar 

  • Baddeley AD, Hitch GJ (1974) Working memory. In: Bower G (ed) Recent advances in learning and motivation, vol VIII. Academic Press, New York, pp 47–90

    Google Scholar 

  • Bailey P, Bonin G von (1951) The isokortex of Man. Univ. I11. Press, Urbana

    Google Scholar 

  • Barbas H, Pandya DN (1989) Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J Comp Neurol 286: 353–375

    Article  CAS  PubMed  Google Scholar 

  • Barbas H, Pandya DN (1991) Patterns of connections of the prefrontal cortex in the rhesus monkey associated with cortical architecture. In: Levin HS, Eisenberg HM, Benton AL (eds) Frontal lobe function and dysfunction. Oxford University Press, New York, pp 35–58

    Google Scholar 

  • Barbas H, Haswell Henion TH, Dermon CR (1991) Diverse thalamic projections to the prefrontal cortex in the rhesus monkey. J Comp Neurol 313: 65–94

    Article  CAS  PubMed  Google Scholar 

  • Barde LH, Thompson-Schill SL (2002) Models of functional organization of the lateral prefrontal cortex in verbal working memory: evidence in favor of the process model. J Cogn Neurosi 14(7): 1054–1063

    Article  Google Scholar 

  • Beckstead RM (1979) An autoradiographic examination of corticocortical and subcortical projections of the mediodorsal-projection (prefrontal) cortex in the rat. I Comp Neurol 184: 43–62

    Article  CAS  Google Scholar 

  • Björklund A, Divac I, Lindvall O (1978) Regional distribution of catecholamines in monkey cerebral cortex. Evidence for a dopaminergic innervation of primate prefrontal cortex. Neurosci Letts 7: 115–199

    Article  Google Scholar 

  • Botvinick MM, Braver TS, Carter CS, Barch DM, Cohen JC (2001) Conflict monitoring and cognitive control. Psychol Rev 108: 624–652

    Article  CAS  PubMed  Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde. Barth, Leipzig

    Google Scholar 

  • Buechel C, Coull JT, Friston, KJ (1999) The predictive value of changes in effective connectivity for human learning. Science 283: 1538–1541

    Article  PubMed  Google Scholar 

  • Carter CJ (1982) Topographical distribution of possible glutamatergic pathways from the frontal cortex to the striatum and substantia nigra in rats. Neuropharmacology 21: 379–383

    Article  CAS  PubMed  Google Scholar 

  • Carter CS, Braver TS, Barch DM, Botvinick MM, Noll DC, Cohen JD (1998) Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280: 747–749

    Article  CAS  PubMed  Google Scholar 

  • Carter CS, MacDonald AM, Botvinick M, Ross LL, Stenger A, Noll D, Cohen JD (2000) Parsing executive processes: Strategic vs. evaluative functions of the anterior cingulate cortex. Proceedings of the National Academy of Sciences 97: 1944–1948

    Article  CAS  Google Scholar 

  • Constantinidis C, Williams GV, Goldman-Rakic PS (2002) A role for inhibition in shaping the temporal flow of information in prefrontal cortex. Nat Neurosci 5(2): 175–180

    Article  CAS  PubMed  Google Scholar 

  • Chafee MV, Goldman-Rakic PS (1998) Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J Neurophysiol 79: 2919–2940

    CAS  PubMed  Google Scholar 

  • Christoff K, Gabrieli JDE (2000) The frontopolar cortex and human cognition: evidence for a rostrocaudal hierarchical organization within the human prefrontal cortex. Psychobiology 28: 168–186

    Google Scholar 

  • Courtney SM, Ungerleider LG, Keil K, Haxby JV (1996) Object and spatial working memory activate separate neural systems in human cortex. Cereb Cortex 6: 39–49

    CAS  PubMed  Google Scholar 

  • Courtney SM, Petit L, Maisog JM, Ungerleider LG, Haxby JV (1998) An area specialized for spatial working memory in human frontal cortex. Science 279: 1347–1351

    Article  CAS  PubMed  Google Scholar 

  • D’Esposito M, Aguirre GK, Zarahn E, Ballard D, Shin RK, Lease J (1998) Functional MRI studies of spatial and nonspatial working memory. Cogn Brain Res 7: 1–13

    Article  CAS  Google Scholar 

  • D’Esposito M, Postle BR, Ballard D, Lease J (1999) Maintenance versus manipulation of information held in working memory: an event-related fMRI study. Brain Cogn 41: 66–86

    Article  CAS  PubMed  Google Scholar 

  • D’Esposito M, Postle BR, Rypma B. (2000a) Prefrontal cortical contributions to working memory: evidence from event-related fMRI studies. Exp Brain Res 133: 3–11

    Article  PubMed  Google Scholar 

  • D’Esposito M, Ballard D, Zarahn E, Aguirre GK (2000b) The role of the prefrontal cortex in sensory memory and motor preparation: an event-related fMRI study. Neuroimage 11: 400–408

    Article  CAS  PubMed  Google Scholar 

  • Deutch AY, Cameron DS (1992) Pharmacological characterization of dopamine systems in the nucleus accumbens core and shell. Neuroscience 6: 49–56

    Article  Google Scholar 

  • Divac I, Mogenson J (1985) The prefrontal »cortex« in the pigeon. Catecholamine histofluorescence. Neuroscience 15: 677–682

    Article  CAS  PubMed  Google Scholar 

  • Divac I, Holst MC, Nelson J, McKenzie JS (1987) Afferents of the frontal cortex in the echidna (Tachyglossus aculeatus). Indication of an outstandingly large prefrontal area. Brain Behav Evol 30: 303–320

    CAS  PubMed  Google Scholar 

  • Duncan J (2001) An adaptive coding model of neural function in prefrontal cortex. Nat Rev Neurosci 2(11): 820–829

    Article  CAS  PubMed  Google Scholar 

  • Duncan J, Miller EK (2002) Cognitive focus through adaptive neural coding in the primate prefrontal cortex. In: Stuss DT, Knight RT (eds) Frontal lobe function. Oxford University Press, New York, pp 278–291

    Google Scholar 

  • Duncan J, Owen AM (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Cogn Sci 23: 475–483

    CAS  Google Scholar 

  • Elliott R, Frith CD, Dolan RJ (1997) Differential neural response to positive and negative feedback in planning and guessing tasks. Neuropsychologia 35: 1395–1404

    Article  PubMed  Google Scholar 

  • Elliott R, Frith CD, Dolan RJ (2000) Dissociable functions in the medial and lateral orbitofrontal cortex: evidence from human neuroimaging studies. Cereb Cortex 10: 308–317

    Article  CAS  PubMed  Google Scholar 

  • Ferstl EC, Cramon DY von (2001). The role of coherence and cohesion in text comprehension: An event-related fMRI study. Brain Res Cogn Brain Res 11: 325–340

    Article  CAS  PubMed  Google Scholar 

  • Ferstl EC, Cramon DY von (2002). What does the frontomedian cortex contribute to language processing: Coherence or Theory of Mind? Neuroimage 17: 1599–1612

    Article  PubMed  Google Scholar 

  • Francis S, Rolls ET, Bowtell R, McGlone F, O’Doherty J, Browning A, Clare S, Smith E (1999) The representation of pleasant touch in the brain and its relationship with taste and olfactory areas. Neuroreport 10(3): 453–459

    CAS  PubMed  Google Scholar 

  • Freedman DJ, Riesenhuber M, Poggio T, Miller EK (2001) Categorical representation of visual stimuli in the primate prefrontal cortex. Science 291(5502): 312–316

    Article  CAS  PubMed  Google Scholar 

  • Freedman DJ, Riesenhuber M, Poggio T, Miller EK (2002) Visual categorization and the primate prefrontal cortex: neurophysiology and behavior. J Neurophysiol 88(2): 929–941

    PubMed  Google Scholar 

  • Friston KJ, Buechel C, Fink GR, Morris J, Rolls E, Dolan RJ (1997) Psychophysiological and modulatory interactions in neuroimaging. Neuroimage 6: 218–229

    Article  CAS  PubMed  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61: 331–349

    CAS  PubMed  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1990) Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms. J Neurophysiol 63: 814–831

    CAS  PubMed  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1991) Neuronal activity related to saccadic eye movements in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 65: 1464–1483

    CAS  PubMed  Google Scholar 

  • Fuster JM (1989) The prefrontal cortex: Anatomy, physiology and neuropsychology of the frontal lobe. Raven, New York

    Google Scholar 

  • Fuster JM (2000) Prefrontal neurons in networks of executive memory. Brain Res Bull 52(5): 331–336

    Article  CAS  PubMed  Google Scholar 

  • Fuster JM, Jervey JP (1981) Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli. Science 212: 952–955

    CAS  PubMed  Google Scholar 

  • Fuster JM, Bauer RH, Jervey JP (1982) Cellular discharge in the dorsolateral prefrontal cortex of the monkey in cognitive tasks. Exp Neurol 77: 679–694

    Article  CAS  PubMed  Google Scholar 

  • Fuster JM, Bodner M, Kroger JK (2000) Cross-modal and cross-temporal association in neurons of frontal cortex. Nature 405(6784): 347–351

    Article  CAS  PubMed  Google Scholar 

  • Gerfen CR (1992) The neostriatal mosaic: Multiple levels of compartmental organization. Trends Neuosci 15: 133–139

    Article  CAS  Google Scholar 

  • Glahn DC, Kim J, Cohen MS, Poutanen VP, Therman S, Bava S, Van Erp TG, Manninen M, Huttunen M, Lonnqvist J, Standertskjold-Nordenstam CG, Cannon TD (2002) Maintenance and manipulation in spatial working memory: dissociations in the prefrontal cortex. Neuroimage 17(1): 201–213

    Article  CAS  PubMed  Google Scholar 

  • Gnadt JW, Andersen RA (1988) Memory-related motor planning activity in posterior parietal cortex of macaque. Exp Brain Res 70: 216–220

    CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS (1987a) Circuitry of primate prefrontal cortex and regulation of behaviour by representational memory. In: Plum F (ed) Handbook of physiology: the nervous system, vol V. American Physiological Society, Bethesda/MD, pp 373–417

    Google Scholar 

  • Goldman-Rakic PS (1987b) Development of cortical circuitry and cognitive function. Child Dev 58: 601–622

    CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS (1993) Specification of higher cortical functions. J Head Trauma Rehabil 8(1): 13–23

    Google Scholar 

  • Goldman-Rakic PS (1996) The prefrontal landscape: Implications of functional architecture for understanding human mentation and the central executive. Philosophical Transactions of the Royal Society of London, Series B 351: 1445–1453

    CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS (2000) Localization of function all over again. Neuroimage 11: 451–457

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS, Porrino LJ (1985) The primate mediodorsal (MD) nucleus and its projection to the frontal lobe. J Comp Neurol 242: 535–560

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS, Selemon LD, Schwartz ML (1984) Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience 12: 719–743

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS, Funahashi S, Bruce CJ (1990) Neocortical memory circuits. Q J Quant Biol 55: 1025–1038

    CAS  Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15: 20–25

    Article  CAS  PubMed  Google Scholar 

  • Groenewegen HJ, Uylings HB (2000) The prefrontal cortex and the integration of sensory, limbic and autonomic information. Prog Brain Res 126: 3–28

    CAS  PubMed  Google Scholar 

  • Gruber O (2000) Two different brain systems underlie phonological short-term memory in humans. Neuroimage 11(5): 407

    Article  Google Scholar 

  • Gruber O (2001) Effects of domain-specific interference on brain activation associated with verbal working memory task performance. Cereb Cortex 11: 1047–1055

    Article  CAS  PubMed  Google Scholar 

  • Gruber O (2002) The co-evolution of language and working memory capacity in the human brain. In: Stamenov M, Gallese V (eds.) Mirror neurons and the evolution of brain and language. Advances in consciousness research, vol 42 (Series B). John Benjamins, Amsterdam, Philadelphia, pp 77–86

    Google Scholar 

  • Gruber O, Cramon DY von (2001) Domain-specific distribution of working memory processes along human prefrontal and parietal cortices: a functional magnetic resonance imaging study. Neurosci Letters 297: 29–32

    Article  CAS  Google Scholar 

  • Gruber O, Cramon DY von (2003) The functional neuroanatomy of human working memory revisited — evidence from 3T-fMRI studies using classical domainspecific interference tasks. Neuroimage 19: 797–809

    Article  PubMed  Google Scholar 

  • Gruber O, Goschke T (2004) Executive control emerging from dynamic interactions between brain systems mediating language, working memory and attentional processes. Acta Psychologica 115(2–3): 105–121

    Article  PubMed  Google Scholar 

  • Hackett TA, Stepniewska I, Kaas JH (1999) Prefrontal connections of the parabelt auditory cortex in macaque monkeys. Brain Res 817: 45–58

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa RP, Matsumoto M, Mikami A (2000) Search target selection in monkey prefrontal cortex. J Neurophysiol 84(3): 1692–1696

    CAS  PubMed  Google Scholar 

  • Haxby JV, Petit L, Ungerleider LG, Courtney SM (2000) Distinguishing the functional roles of multiple regions in distributed neural systems for visual working memory, Neuroimage 11: 380–391

    Google Scholar 

  • Hikosaka K, Watanabe M (2000) Delay activity of orbital and lateral prefrontal neurons of the monkey varying with different rewards. Cereb Cortex 10(3): 263–271

    Article  CAS  PubMed  Google Scholar 

  • Hikosaka O, Wurtz RH (1983) Visual oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. J Neurophysiol 49: 1268–1284

    CAS  PubMed  Google Scholar 

  • Kastner S, Ungerleider LG (2000) Mechanisms of visual attention in the human cortex. Ann Rev Neurosci 23: 315–341

    Article  CAS  PubMed  Google Scholar 

  • Kievit J, Kuypers HGJM (1977) Organization of the thalamocortical connexions to the frontal lobe in the rhesus monkey. Exp Brain Res 85: 299–322

    Google Scholar 

  • Kikuchi-Yorioka Y, Sawaguchi T (2000) Parallel visuospatial and audiospatial working memory processes in the monkey dorsolateral prefrontal cortex. Nat Neurosci 3(11): 1075–1076

    Article  CAS  PubMed  Google Scholar 

  • LaBar KS, Gitelman DR, Parrish TB, Mesulam MM (1999) Neuroanatomic overlap of working memory and spatial attention networks: A functional MRI comparison within subjects. Neuroimage 10: 695–704

    Article  CAS  PubMed  Google Scholar 

  • Lane et al. (1997) Neuroanatomical correlates of pleasant and unpleasant emotion. Neuropsychologia 11: 1437–1444

    Article  Google Scholar 

  • MacDonald AW, Cohen JD, Stenger VA, Carter CS (2000) Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288: 1835–1838

    Article  CAS  PubMed  Google Scholar 

  • McLean PD (1990) The triune brain in evolution: Role in paleocerebral functions. Plenum, New York, pp 519–563

    Google Scholar 

  • Mesulam M (1998) From sensation to cognition. Brain 121: 1013–1052

    Article  PubMed  Google Scholar 

  • Metzinger T (2001) Bewusstsein, Beiträge aus der Gegenwartsphilosophie. Mentis, Paderborn

    Google Scholar 

  • Miller EK (2000a) The prefrontal cortex and cognitive control. Nature reviews 1: 59–65

    Article  CAS  Google Scholar 

  • Miller EK (2000b) The prefrontal cortex: no simple matter. Neuroimage 11: 447–450

    Article  CAS  PubMed  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Ann Rev Neurosci 24: 167–202

    Article  CAS  PubMed  Google Scholar 

  • Miller EK, Desimone R (1994) Parallel neuronal mechanisms for short-term memory. Science 263: 520–522

    CAS  PubMed  Google Scholar 

  • Miller EK, Freedman DJ, Wallis JD (2002) The prefrontal cortex: categories, concepts and cognition. Philos Trans R Soc Lond B Biol Sci 357(1424): 1123–1136

    Article  PubMed  Google Scholar 

  • Miyashita Y, Chang HS (1988) Neuronal correlate of pictorial short-term memory in the primate temporal cortex. Nature 331: 68–70

    Article  CAS  PubMed  Google Scholar 

  • Nauta WJH (1971) The problem of the frontal lobe: a reinterpretation. J Psychiatr Res 8: 167–187

    Article  CAS  PubMed  Google Scholar 

  • Nystrom LE, Braver TS, Sabb, FW, Delgado MR, Noll DC, Cohen JD (2000) Working memory for letters, shapes, and locations: fMRI evidence against stimulus-based regional organization in human prefrontal cortex, Neuroimage 11: 424–446

    Article  CAS  PubMed  Google Scholar 

  • O’Doherty J, Rolls ET, Francis S, Bowtell R, McGlone F, Kobal G, Renner B, Ahne G (2000) Sensory-specific satietyrelated olfactory activation of the human orbitofrontal cortex. Neuroreport 11(4): 893–897

    CAS  PubMed  Google Scholar 

  • O’Doherty J, Kringelbach ML, Rolls ET, Hornak J, Andrews C (2001a) Abstract reward and punishment representations in the human orbitofrontal cortex. Nat Neurosci 4(1): 95–102

    Article  CAS  PubMed  Google Scholar 

  • O’Doherty J, Rolls ET, Francis S, Bowtell R, McGlone F (2001b) Representation of pleasant and aversive taste in the human brain. J Neurophysiol 85(3): 1315–1321

    CAS  PubMed  Google Scholar 

  • O’Scalaidhe SP, Wilson FAW, Goldman-Rakic PS (1997) Areal segregation of face-processing neurons in prefrontal cortex. Science 278: 1135–1138

    Article  CAS  PubMed  Google Scholar 

  • O’Scalaidhe SP, Wilson FAW, Goldman-Rakic PS (1999) Face-selective neurons during passive viewing and working memory performance of rhesus monkeys: evidence for intrinsic specialization of neuronal coding. Cereb Cortex 9: 459–475

    Article  PubMed  Google Scholar 

  • Owen AM (1997) The functional organization of working memory processes within human lateral frontal cortex: the contribution of functional neuroimaging. Eur J Neurosci 9: 1329–1339

    CAS  PubMed  Google Scholar 

  • Owen AM (2000) The role of the lateral frontal cortex in mnemonic processing: the contribution of functional neuroimaging. Exp Brain Res 133: 33–43

    Article  CAS  PubMed  Google Scholar 

  • Owen AM, Lee ACH, Williams, EJ (2000) Dissociating aspects of verbal working memory within the human frontal lobe: further evidence for a »process-specific« model of lateral frontal organization. Psychobiology 28: 146–155

    Google Scholar 

  • Pandya DN, Yeterian EH (1990) Prefrontal cortex in relation to other cortical areas in rhesus monkey: architecture and connections. In: Uylings HBM, Van Eden CG, De-Braun JPC et al. (eds) Progress in brain research, vol 85. Elsevier, Amsterdam, pp 63–94

    Google Scholar 

  • Petrides M (1996) Specialized systems for the processing of mnemonic information in the primate prefrontal cortex. Philos Trans R Soc London, Series B 351: 1455–1461

    CAS  Google Scholar 

  • Petrides M, Pandya DN (1999) Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J Neurosci 11: 1011–1036

    Article  CAS  PubMed  Google Scholar 

  • Porrino LJ, Goldberg-Rakic PS (1982) Brainstem innervation of prefrontal and anterior cingulate cortex in the rhesus monkey revealed by retrograde transport of HRP. J Comp Neurol 205: 63–76

    Article  CAS  PubMed  Google Scholar 

  • Postle BR, Stern CE, Rosen BR, Corkin S (2000) An fMRI investigation of cortical contributions to spatial and nonspatial visual working memory. Neuroimage 11: 409–423

    Article  CAS  PubMed  Google Scholar 

  • Preuss TM (1995) Do rats have a prefrontal cortex? The Rose-Woolsey-Akert program reconsidered. J Cog Neurosci 7: 1–24

    Google Scholar 

  • Rainer G, Asaad WF, Miller EK (1997) Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature 393: 577–579

    Google Scholar 

  • Rainer G, Miller EK (2000) Effects of visual experience on the representation of objects in the prefrontal cortex. Neuron 27(1): 179–189

    Article  CAS  PubMed  Google Scholar 

  • Rakic P (1975) Local circuit neurons. Neurosci Res Progr Bull 13: 289–446

    Google Scholar 

  • Ranganath C, Johnson MK, D’Esposito M (2003) Prefrontal activity associated with working memory and episodic long-term memory. Neuropsychologia 41(3): 378–389

    Article  PubMed  Google Scholar 

  • Rao SC, Rainer G, Miller EK (1997) Integration of what and where in the primate prefrontal cortex. Science 276: 821–824

    Article  CAS  PubMed  Google Scholar 

  • Raye CL, Johnson MK, Mitchell KJ, Reeder JA, Greene EJ (2002) Neuroimaging a single thought: dorsolateral PFC activity associated with refreshing just-activated information. Neuroimage 15(2): 447–453

    Article  PubMed  Google Scholar 

  • Reep R (1984) Relationship between prefrontal and limbic cortex: A comparative anatomical review. Brain Behav Evol 25: 5–80

    CAS  PubMed  Google Scholar 

  • Rolls ET (2000) The orbitofrontal cortex and reward. Cereb Cortex 10: 284–294

    Article  CAS  PubMed  Google Scholar 

  • Rolls ET (2002) The functions of the orbitofrontal cortex. In: Stuss DT, Knight RT (eds.) Frontal lobe function. Oxford University Press, Oxford, New York, pp 354–375

    Google Scholar 

  • Rolls ET, Kringelbach ML, De Araujo IE (2003a) Different representations of pleasant and unpleasant odours in the human brain. Eur J Neurosci 18(3): 695–703

    Article  PubMed  Google Scholar 

  • Rolls ET, O’Doherty J, Kringelbach ML, Francis S, Bowtell R, McGlone F (2003b) Representations of pleasant and painful touch in the human orbitofrontal and cingulate cortices. Cereb Cortex 13: 308–317

    Article  CAS  PubMed  Google Scholar 

  • Romanski LM, Tian B, Fritz J, Mishkin M, Goldman-Rakic PS, Rauschecker JP (1999) Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nature Neurosci 2: 1131–1136

    Article  CAS  PubMed  Google Scholar 

  • Rose JE, Woolsey CN (1948) The orbitofrontal cortex and its connections with the mediodorsal nucleus in rabbit, sheep and cat. Res Pub Ass Res Nerv Ment Dis 27: 210–232

    Google Scholar 

  • Rushworth MFS, Owen AM (1998) The functional organization of the lateral frontal cortex: conjecture or conjuncture in the electrophysiological literature? Trends Cogn Sci 2: 46–53

    Article  Google Scholar 

  • Sanides F (1962) Die Architektonik des menschlichen Stirnhirns. Springer, Berlin

    Google Scholar 

  • Sarkissov SA, Filimonoff IN, Kononowa EP, Proebraschenskaja IS, Kukuew LA (1955) Atlas of the cytoarchitectonics of the human cerebral cortex. Medgiz, Moscow

    Google Scholar 

  • Schoenbaum G, Setlow B (2001) Integrating orbitofrontal cortex into prefrontal theory: common processing themes across species and subdivisions. Learn Mem 8(3): 134–147

    Article  CAS  PubMed  Google Scholar 

  • Sesack SR, Deutch AY, Roth RH, Bunney BS (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with phaseolus vulgaris leucoagglutinin. J Comp Neurol 290: 213–242

    Article  CAS  PubMed  Google Scholar 

  • Small DM, Zald DH, Jones-Gotman M, Zatorre RJ, Pardo JV, Frey S, Petrides M (1999) Human cortical gustatory areas: a review of functional neuroimaging data. Neuroreport 10(1): 7–14

    CAS  PubMed  Google Scholar 

  • Smith EE, Jonides J (1999) Storage and executive processes in the frontal lobes. Science 283: 1657–1661

    Article  CAS  PubMed  Google Scholar 

  • Smith EE, Jonides J, Marshuetz C, Koeppe RA (1998) Components of verbal working memory: evidence from neuroimaging. Proceedings of the National Academy of Science, USA, 95: 876–882

    Article  CAS  Google Scholar 

  • Stuss DT, Benson DF (1986) The frontal lobes. Raven, New York

    Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, Stuttgart

    Google Scholar 

  • Tanji J, Kurata K (1985) Contrasting neuronal activity in supplementary and precentral motor cortex of monkeys. I. Responses to instructions determining motor responses to forthcoming signals of different modalities. J Neurophysiol 53: 129–141

    CAS  PubMed  Google Scholar 

  • Tanji J, Taniguchi K, Saga T (1980) Supplementary motor area: neuronal response to motor instructions. J Neurophysiol 43: 60–68

    CAS  PubMed  Google Scholar 

  • Tremblay L, Schultz W (2000) Reward-related neuronal activity during go-nogo task performance in primate orbitofrontal cortex. J Neurophysiol 83(4): 1864–1876

    CAS  PubMed  Google Scholar 

  • Thierry AM, Blanc G, Sobel A, Stinus L, Glowinski J (1973) Dopaminergic terminals in the rat cortex. Science 182: 499–501

    CAS  PubMed  Google Scholar 

  • Ullsperger M, Cramon DY von (2001) Subprocesses of performance monitoring: a dissociation of error processing and response competition revealed by event-related fMRI and ERPs. Neuroimage 14: 1387–1401

    Article  CAS  PubMed  Google Scholar 

  • Ullsperger M, Cramon DY von (2003) Error monitoring using external feedback: specific roles of the habenular complex, the reward system, and the cingulate motor area revealed by functional magnetic resonance imaging. J Neurosci 23(10): 4308–4314

    CAS  PubMed  Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle J, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT, Cambridge, MA, pp 549–586

    Google Scholar 

  • Ungerleider, LG, Courtney, SM, Haxby, JV (1998) A neural system for visual working memory. Proc Natl Acad Sci USA 95: 883–890

    Article  CAS  PubMed  Google Scholar 

  • Uylings HBM, VanEden CG (1990) Qualitative and quantitative comparison of the prefrontal cortex in rat and in primates, including humans. Prog Brain Res 85: 31–62

    CAS  PubMed  Google Scholar 

  • Van Essen DC, Maunse JHR (1983) Hierarchical organization and functional streams in the visual cortex. Trends Neurosci 6: 370–375

    Article  Google Scholar 

  • Volz KG, Schubotz RI, Cramon DY von (2003) Predicting events of varying probability: uncertainty investigated by fMRI. Neuroimage 19: 271–280

    Article  PubMed  Google Scholar 

  • Volz KG, Schubotz RI, Cramon DY von (2004) Why am I unsure? Internal and external causes of uncertainty dissociated by fMRI. Neuroimage (in press)

    Google Scholar 

  • Wallis JD, Anderson KC, Miller EK (2001) Single neurons in prefrontal cortex encode abstract rules. Nature 411(6840): 953–956

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M (2002) Integration across multiple cognitive and motivational domains in monkey prefrontal cortex. In: Stuss DT, Knight RT (eds) Frontal lobe function. Oxford University Press, Oxford, New York, pp 326–337

    Google Scholar 

  • Watanabe M, Hikosaka K, Sakagami M, Shirakawa S (2002) Coding and monitoring of motivational context in the primate prefrontal cortex. J Neurosci 22(6): 2391–2400

    CAS  PubMed  Google Scholar 

  • Watanabe T, Niki H (1985) Hippocampal unit activity and delayed response in the monkey. Brain Res 325: 241–254

    Article  CAS  PubMed  Google Scholar 

  • Weinberger DR (1993) A connectionist approach to the prefrontal cortex. J Neuropsychiatry 5: 241–253

    CAS  Google Scholar 

  • White IM, Wise SP (1999) Rule-dependent neuronal activity in the prefrontal cortex. Exp Brain Res 126: 315–335

    CAS  PubMed  Google Scholar 

  • Wilson FAW, Scalaidhe SPO, Goldman-Rakic PS (1993) Dissociation of object and spatial processing domains in the primate prefrontal cortex. Science 260: 1955–1957

    CAS  PubMed  Google Scholar 

  • Zilles K, Armstrong E, Schleicher A, Kretzschmann HJ (1988) The pattern of gyrification in the cerebral cortex. Anat Embryol (Berl) 179: 173–179

    Article  CAS  PubMed  Google Scholar 

  • Zysset S, Müller K, Lohmann G, Cramon DY von (2001) Color-word matching stroop task: Separating interference and response conflict. Neuroimage 13: 29–36

    Article  CAS  PubMed  Google Scholar 

  • Zysset S, Huber, O, Ferstl E, Cramon, D.Y. von (2002) The anterior frontomedian cortex and evaluative judgement: An fMRI study. Neuroimage 15: 983–991

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Gruber, O., Arendt, T., von Cramon, D. (2005). Neurobiologische Grundlagen. In: Förstl, H. (eds) Frontalhirn. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26841-3_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-26841-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20485-5

  • Online ISBN: 978-3-540-26841-3

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics